
mSWAT: Low-Cost Hardware Fault Detection

and Diagnosis for Multicore Systems

Siva Kumar Sastry Hari, Man-Lap (Alex) Li,

Pradeep Ramachandran, Byn Choi, Sarita Adve

Department of Computer Science

University of Illinois at Urbana-Champaign

swat@cs.uiuc.edu

Motivation

• Hardware will fail in-the-field due to several reasons

Need in-field detection, diagnosis, repair, and recovery

• Reliability problem pervasive across many markets

– Traditional redundancy solutions (e.g., nMR) too expensive

 Need low-cost solutions for multiple failure sources

 Must incur low area, performance, power overhead

Transient errors

(High-energy particles)
Wear-out

(Devices are weaker)

Design Bugs
… and so on

SWAT: Low-Cost Hardware Reliability

SWAT Observations

• Need handle only hardware faults that propagate to software

• Fault-free case remains common, must be optimized

SWAT Approach

 Watch for software anomalies (symptoms)

Zero to low overhead “always-on” monitors

 Diagnose cause after symptom detected

 May incur high overhead, but rarely invoked

3

SWAT Framework Components

Fault Error Symptom

detected
Recovery

Diagnosis Repair

Checkpoint Checkpoint

 Detectors with simple hardware [Li et al. ASPLOS’08]

µarch-level Fault Diagnosis (TBFD)

[Li et al. DSN’09] 4

Challenge

Fault Error Symptom

detected
Recovery

Diagnosis Repair

Checkpoint Checkpoint

 Detectors with simple hardware [Li et.al. ASPLOS’08]

µarch-level Fault Diagnosis (TBFD)

[Li et.al. DSN’09] 5

Shown to work well for single-threaded apps

Does SWAT approach work on multithreaded apps?

Challenge: Data sharing in multithreaded apps

• Multithreaded apps share data among threads

• Does symptom detection work?

• Symptom causing core may not be faulty

– How to diagnose faulty core?
6

Memory

Store

Symptom Detection

on a fault-free core

Load

Core 1 Core 2

Error

Fault

Contributions

• Evaluate SWAT detectors on multithreaded apps

– Low Silent Data Corruption rate for multithreaded apps

– Observed symptom from fault-free cores

• Novel fault diagnosis for multithreaded apps

– Identifies the faulty core despite error propagation

– Provides high diagnosability

7

Outline

• Motivation

• mSWAT Detection

• mSWAT Diagnosis

• Results

• Summary and Future Work

8

mSWAT Fault Detection

• SWAT Detectors:

– Low-cost monitors to detect anomalous sw behavior

– Incur near-zero perf overhead in fault-free operation

• Symptom detectors provide low Silent Data Corruption rate

SWAT firmware

Fatal Traps

Division by zero,

RED state, etc.

Kernel Panic

OS enters panic

State due to fault

High OS

High contiguous

OS activity

Hangs

Simple HW hang

detector

App Abort

Application

abort due to fault

SWAT Fault Diagnosis

• Rollback/replay on same/different core

– Single-threaded application on multicore

No symptom Symptom

Deterministic s/w or

Permanent h/w bug

Symptom detected

Faulty

Rollback on faulty core

Rollback/replay

on good core

Continue

Execution

Transient or

Non-deterministic s/w bug

Symptom

Permanent

h/w fault,

needs repair!

No symptom

Deterministic s/w bug,

send to s/w layer

10

Good

Challenges

• Rollback/replay on same/different core

– Single-threaded application on multicore

No symptom Symptom

Deterministic s/w or

Permanent h/w bug

Symptom detected

Rollback on faulty core

Rollback/replay

on good core

Continue

Execution

Transient or

Non-deterministic s/w bug

Symptom

Permanent

h/w fault,

needs repair!

No symptom

Deterministic s/w bug,

send to s/w layer

11

Faulty Good

No known good cores available

Faulty core is unknown

How to replay multithreaded apps?

Extending SWAT Diagnosis to Multithreaded Apps

• Assumptions: In-core faults, single core fault model

• Naïve extension – N known good cores to replay the trace

Too expensive – area

Requires full-system deterministic replay

• Simple optimization – One spare core

Not scalable, requires N full-system deterministic replays

High hardware overhead – requires a spare core

Single point of failure – spare core
12

Faulty core

is C2 C1 C2 C3 No Symptom Detected Spare

C1 C2 C3 Symptom Detected Spare

C1 C2 C3 Symptom Detected Spare

mSWAT Diagnosis - Key Ideas

13

Challenges

Multithreaded

applications

Full-system

deterministic

replay

No known

good core

Emulated TMR

TA TB TC TD

TA

TA TB TC TD

TA

A B C D

TA

A B C D

Key Ideas
Isolated

deterministic

replay

mSWAT Diagnosis - Key Ideas

14

Challenges

Multithreaded

applications

Full-system

deterministic

replay

No known

good core

Emulated TMR

TA TB TC TD

TA

TA TB TC TD

A B C D A B C D

Key Ideas
Isolated

deterministic

replay

TA TB

TA TB

mSWAT Diagnosis - Key Ideas

15

Challenges

Multithreaded

applications

Full-system

deterministic

replay

No known

good core

Emulated TMR

TA TB TC TD

TA

TA TB TC TD

A B C D A B C D

Key Ideas
Isolated

deterministic

replay

TA TB TC

TC TA TB

mSWAT Diagnosis - Key Ideas

16

Challenges

Multithreaded

applications

Full-system

deterministic

replay

No known

good core

Emulated TMR

TA TB TC TD

TA

TA TB TC TD

A B C D A B C D

Key Ideas
Isolated

deterministic

replay

TD TA TB TC

TC TD TA TB Maximum 3 replays

Multicore Fault Diagnosis Algorithm Overview

17

Replay &

capture fault

activating trace

TA TB TC TD

A B C D

Example

Symptom

detected

Diagnosis

Deterministically

replay

captured trace

Multicore Fault Diagnosis Algorithm Overview

18

Replay &

capture fault

activating trace

Symptom

detected

Diagnosis

Deterministically

replay

captured trace

TA TB TC TD

A B C D A B C D

Example

Multicore Fault Diagnosis Algorithm Overview

19

Replay &

capture fault

activating trace

Symptom

detected

Diagnosis

Deterministically

replay

captured trace

TA TB TC TD

A B C D

TD TA TB TC

A B C D

Example

Look for

divergence

Multicore Fault Diagnosis Algorithm Overview

20

Replay &

capture fault

activating trace

Symptom

detected

Diagnosis

Deterministically

replay

captured trace

Look for

divergence

TA TB TC TD

A B C D

TD TA TB TC

A B C D

Divergence

Example

TA

A B C D

Faulty core is A

Fault-free Cores

Divergence

Faulty

core

Digging Deeper

21

Symptom

detected

Replay &

capture fault

activating trace

Isolated

deterministic

replay

Faulty

core
Look for

divergence

What info to capture to enable

isolated deterministic replay?

How to identify divergence?

Hardware costs?

Enabling Isolated Deterministic Replay

22

Thread

Input to thread

Ld

Ld

Ld

Ld

• Recording thread inputs sufficient – similar to BugNet

• Record all retiring loads values

Digging Deeper (Contd.)

23

Symptom

detected

Replay &

capture fault

activating trace

Isolated

deterministic

replay

Faulty

core
Look for

divergence

How to identify divergence?

Trace

Buffer

What info to capture to enable

isolated deterministic replay?

Hardware costs?

Identifying Divergence

24

Thread

• Comparing all instructions  Large buffer requirement

• Faults corrupt software through memory and control instrns

• Capture memory and control instructions

Store

Load

Branch

Store

Digging Deeper (Contd.)

25

Symptom

detected

Replay &

capture fault

activating trace

Isolated

deterministic

replay

Faulty

core
Look for

divergence

How to identify divergence?

Trace

Buffer

What info to capture to enable

isolated deterministic replay?

Hardware costs?

How Big?

Hardware Costs

26

Native Execution

Memory Backed Log

Small hardware support

Firmware Emulation

Minor support for firmware reliability

Symptom

detected

Replay &

capture fault

activating trace

Isolated

deterministic

replay

Faulty

core
Look for

divergence

Trace

Buffer

What if the faulty core subverts the process?

Key Idea: On a divergence two cores take over

Trace Buffer Size

• Long detection latency  large trace buffers (8MB/core)

– Need to reduce the size requirement

 Iterative Diagnosis Algorithm

27

Repeatedly execute on short traces

e.g. 100,000 instrns

Symptom

detected

Replay &

capture fault

activating trace

Isolated

deterministic

replay

Faulty

core
Look for

divergence

Trace

Buffer

Experimental Methodology

• Microarchitecture-level fault injection

– GEMS timing models + Simics full-system simulation

– Six multithreaded applications on OpenSolaris

 4 Multimedia apps and 1 each from SPLASH and PARSEC

– 4 core system running 4-threades apps

• Faults in latches of 7 arch units

– Permanent (stuck-at) and transients faults

28

Experimental Methodology

Detection:

• Metrics: SDC Rate, detection latency

Diagnosis:

• Iterative algorithm with 100,000 instrns in each iteration

• Until divergence or 20M instrns

• Deterministic replay is native execution

• Not firmware emulated

• Metrics: Diagnosability, overheads 29

10M instr

Timing simulation

If no symptom in 10M instr, run to completion

Functional simulation

Fault

Masked or

Silent Data Corruption (SDC)

Results: mSWAT Detection Summary

• SDC Rate: Only 0.2% for permanents & 0.55% for transients

• Detection Latency: Over 99% detected within 10M instrns 30

0%

20%

40%

60%

80%

100%

Permanents Transients

P
e
rc

e
n

ta
g

e
 o

f
in

je
c
ti

o
n

s

SDC

DUE

Detect-Faulty

Masked

 0.2% 0.55%

Detected

Results: mSWAT Detection Summary

• SDC Rate: Only 0.2% for permanents & 0.55% for transients

• Detection Latency: Over 99% detected within 10M instrns 31

0%

20%

40%

60%

80%

100%

Permanents Transients

P
e
rc

e
n

ta
g

e
 o

f
in

je
c
ti

o
n

s

SDC

DUE

Detect-Fault-Free

Detect-Faulty

Masked

 0.2% 0.55% 4.5% detected

in a good core

Results: mSWAT Diagnosability

• Over 95% of detected faults are successfully diagnosed

• All faults detected in fault-free core are diagnosed

• Undiagnosed faults: 88% did not activate faults
32

0%

20%

40%

60%

80%

100%

Decoder INT ALU Reg
Dbus

Int reg ROB RAT AGEN Average

P
e
rc

e
n

ta
g

e
 o

f
D

e
te

c
te

d
 F

a
u

lt
s

CorrectlyDiagnosed Undiagnosed

 99 99 99 86 100 80 99 95.9

Results: mSWAT Diagnosis Overheads

• Diagnosis Latency

– 98% diagnosed <10 million cycles (10ms in 1GHz system)

– 93% were diagnosed in 1 iteration

 Iterative approach is effective

• Trace Buffer size

– 96% require <400KB/core

 Trace buffer can easily fit in L2 or L3 cache

33

mSWAT Summary

• Detection: Low SDC rate, detection latency

• Diagnosis – identifying the faulty core

– Challenges: no known good core, deterministic replay

– High diagnosability with low diagnosis latency

– Low Hardware overhead - Firmware based implementation

– Scalable – maximum 3 replays for any system

• Future Work:

– Reducing SDCs, detection latency, recovery overheads

– Extending to server apps; off-core faults

– Validation on FPGAs (w/ Michigan)

34

