MSWAT: Low-Cost Hardware Fault Detection
and Diagnosis for Multicore Systems

Siva Kumar Sastry Hari, Man-Lap (Alex) Li,
Pradeep Ramachandran, Byn Choi, Sarita Adve

Department of Computer Science
University of lllinois at Urbana-Champaign
swat@cs.uiuc.edu

Motivation

« Hardware will fail in-the-field due to several reasons

| Transient errors Design éugs)
(High-energy particles) ... and so on

Wear-out
(Devices are weaker)

—Need in-field detection, diagnosis, repair, and recovery

Reliability problem pervasive across many markets

— Traditional redundancy solutions (e.g., nMR) too expensive

= Need low-cost solutions for multiple failure sources

* Must incur low area, performance, power overhead

SWAT: Low-Cost Hardware Reliability

SWAT Observations
 Need handle only hardware faults that propagate to software

« Fault-free case remains common, must be optimized

SWAT Approach
= Waitch for software anomalies (symptoms)
Zero to low overhead “always-on” monitors
Diagnose cause after symptom detected

May incur high overhead, but rarely invoked

SWAT Framework Components

Detectors with simple hardware [Li et al. ASPLOS’08]

Checkpoint

1

Fault Error

L
. . o* e
L 4 '3 q n
& .‘ I} “ 4 a
" &
<®

Symptom

- J

Checkpoint

T

detected N Reclovery

[Diagnosis]—> Repair

puarch-level Fault Diagnosis (TBFD)

[Li et al. DSN’09]

Challenge

Shown to work well for single-threaded apps

Does SWAT approach work on multithreaded apps?

Challenge: Data sharing in multithreaded apps

« Multithreaded apps share data among threads
Corel Core 2

Load

! Symptom Detection
* on a fault-free core

Memory

« Does symptom detection work?
« Symptom causing core may not be faulty

— How to diagnose faulty core?

Contributions

« Evaluate SWAT detectors on multithreaded apps
— Low Silent Data Corruption rate for multithreaded apps

— Observed symptom from fault-free cores

« Novel fault diagnosis for multithreaded apps
— ldentifies the faulty core despite error propagation

— Provides high diagnosability

Outline

MSWAT Detection
MSWAT Diagnosis
Results

Summary and Future Work

MSWAT Fault Detection

« SWAT Detectors:
— Low-cost monitors to detect anomalous sw behavior

— Incur near-zero perf overhead in fault-free operation

« Symptom detectors provide low Silent Data Corruption rate

SWAT Fault Diagnosis

Rollback/replay on same/different core

— Single-threaded application on multicore
Faulty Good

Symptom detected [] []

[Rollback on faulty core } C]

No sym ptom/\Sym ptom

Deterministic s/w or

Transient or

Non-deterministic s/w bug Permanent h/w bug
Continue Rollback/replay [] -D
Execution on good core

No symptom/\ Symptom

Permanent Deterministic s/w bug,
h/w fault, send to s/w layer
needs repair!

10

Challenges

7N 7N
//Faulty\ //Good \\
I/ - I)\ -
. N \ \
Faulty core is unknown —»,' - | ,’ \l] \‘
: < | |
No known good cores available | | : :
- S | |
How to replay multithreaded apps? \\ \\ I’ I’
) ’ / /
N . -y
N)
N N_

11

Extending SWAT Diagnosis to Multithreaded Apps

 Assumptions: In-core faults, single core fault model

« Naive extension — N known good cores to replay the trace
¥ Too expensive — area
N Requires full-system deterministic replay

« Simple optimization — One spare core

. . . Symptom Detected
. . - Symptom Detected
. . - No Symptom Detected |:> FauiI;yCcZore

T Not scalable, requires N full-system deterministic replays

N High hardware overhead —requires a spare core

$ Single point of failure — spare core

12

MSWAT Diagnosis - Key ldeas

Challenges

Key ldeas

Multithreaded
applications

MSWAT Diagnosis - Key ldeas

Challenges

Key ldeas

Multithreaded
applications

MSWAT Diagnosis - Key ldeas

Challenges

Key ldeas

Multithreaded
applications

MSWAT Diagnosis - Key ldeas

Multithreaded
applications

Challenges

Key ldeas

A B CcC D A B C D

(T[T) (T[T)

)) G
Maximum 3 replays --- 16

Multicore Fault Diagnosis Algorithm Overview

o —— o — — — — — —

/ Diagnosis

| \'

| I
Symptom | Replay & i

» capture fault |
detected | (activating trace i

|

. ;

A B C D
[Te J(Te (7o)

Example

17

Multicore Fault Diagnosis Algorithm Overview

o —— o — — — — — —

/ Diagnosis

| \'

| I
Symptom | Replay & i

» capture fault |
detected | (activating trace i

|

Y /

A B C D A B C D
[Te J(Te (7o)

Example

18

Multicore Fault Diagnosis Algorithm Overview

o —— o — — — — — —

{’ Diagnosis \:
I
Symptom | Replay & '
ymp . capture fault _Ld,mkfor>
detected ! | activating trace divergence
I
I

Example

19

Multicore Fault Diagnosis Algorithm Overview

o —— o — — — — — —

{’/ Diagnosis \l

! |

Symptom | Replay & |
e L»{ capture fault _|—¢|>0kf0r Faulty
detected ! | activating trace divergence| COre

’ |

//

B C D
F F Fault-free Cores
Example

Divergence

C) T) == Faulty coreis A

20

Digging Deeper

What Info to capture to enable
Isolated determlnlstlc replay?

How to identify divergence?
Symptom Replay& Look for (Faulty
detected capture fatlt dlvergence core
electe activating trace

Hardware costs?

21

Enabling Isolated Deterministic Replay

Thread

Input to thread

Recording thread inputs sufficient — similar to BugNet

 Record all retiring loads values

[\®)
\®)

Digging Deeper (Contd.)

What info to capture to enable
Isolated deterministic replay? _

[@identify diverge@
|

Symptom Replay & Look for (Faulty
detected cqptu_re fault divergencét core
elecie activating trace

\
Trace
Buffer)

Hardware costs?

23

Identifying Divergence

Comparing all instructions = Large buffer requirement
Faults corrupt software through memory and control instrns

« Capture memory and control instructions

Thread

~N—_——,—— -

24

Digging Deeper (Contd.)

What info to capture to enable
Isolated deterministic replay?

[How to identify divergence?

Symptom Replay & Look for (Faulty
detected cqptu_re fault divergence'L core
€lecte activating trace

\
Trace
Buffer)

Qardware costs?>

25

Hardware Costs

Native Execution Firmware Emulation

Look for f Faulty
divergencet core

Symptom Replay &
capture fault
detected actlvatlng trace

Trace
Buffer) I

Minor support for firmware reliability

Memory Backed Log
Small hardware support

What if the faulty core subverts the process?
Key Ildea: On a divergence two cores take over 2

How Big?

Trace Buffer Size

 Long detection latency = large trace buffers (8MB/core)
— Need to reduce the size requirement

= Iterative Diagnosis Algorithm

Repeatedly execute on short traces
e.g. 100,000 instrns

N\

Symptom Replay &
capture fault
detected activating trace

U

N
Trace
Buffer)

Look for f Faulty }

divergencet core

27

Experimental Methodology

Microarchitecture-level fault injection
— GEMS timing models + Simics full-system simulation

— Six multithreaded applications on OpenSolaris
* 4 Multimedia apps and 1 each from SPLASH and PARSEC

— 4 core system running 4-threades apps

Faults in latches of 7 parch units

— Permanent (stuck-at) and transients faults

Experimental Methodology

Detection:
Fault

10M instr If no symptom in 10M instr, run to completion
!

_ Functional simulation
Masked or

Silent Data Corruption (SDC)
« Metrics: SDC Rate, detection latency

Diagnosis:

« lterative algorithm with 100,000 instrns in each iteration
« Until divergence or 20M instrns

« Deterministic replay is native execution
* Not firmware emulated

* Metrics: Diagnosability, overheads 2

Results: mSWAT Detection Summary

0.2% 0.55%

()]

0 - L
5 80% 1 SDC
0
_G)
£ 60% - m DUE
©
% m Detected
S 40% - ———
c
g Masked
(b}
o 20% - R

0% .

Permanents Transients

« SDC Rate: Only 0.2% for permanents & 0.55% for transients
* Detection Latency: Over 99% detected within 10M instrns o

Results: mSWAT Detection Summary

100% — 0.55% 4.5% detected
() |inagood core
g 80% 1 ~ mSDC
-&)—’- m DUE
S 60% A -
IS m Detect-Fault-Free
)
g 40% - m Detect-Faulty
-
8 Masked
)
o 20% - -
0%

Permanents Transients

« SDC Rate: Only 0.2% for permanents & 0.55% for transients
« Detection Latency: Over 99% detected within 10M instrns

Results: mSWAT Diagnosabilit

99 99 99 86 100 80 99 95.9

100% -

80% -

60% -

40% -

20% -

Percentage of Detected Faults

0% -
Decoder INT ALU Reg Intregr ROB RAT AGEN Average
Dbus

m CorrectlyDiagnosed mUndiagnhosed

Over 95% of detected faults are successfully diagnosed
All faults detected in fault-free core are diagnosed

Undiagnosed faults: 88% did not activate faults
32

Results: mSWAT Diagnosis Overheads

Diagnosis Latency
— 98% diagnosed <10 million cycles (10ms in 1GHz system)
— 93% were diagnosed in 1 iteration

* |terative approach is effective

Trace Buffer size
— 96% require <400KB/core

* Trace buffer can easily fitin L2 or L3 cache

33

MSWAT Summary

Detection: Low SDC rate, detection latency

Diagnosis — identifying the faulty core

— Challenges: no known good core, deterministic replay

— High diagnosability with low diagnosis latency

— Low Hardware overhead - Firmware based implementation

— Scalable = maximum 3 replays for any system

Future Work:

— Reducing SDCs, detection latency, recovery overheads
— Extending to server apps,; off-core faults
— Validation on FPGAs (w/ Michigan)

