mSWAT: Low-Cost Hardware Fault Detection and Diagnosis for Multicore Systems

Siva Kumar Sastry Hari, Man-Lap (Alex) Li, Pradeep Ramachandran, Byn Choi, Sarita Adve

Department of Computer Science
University of Illinois at Urbana-Champaign
swat@cs.uiuc.edu

Motivation

Hardware will fail in-the-field due to several reasons

Wear-out (Devices are weaker)

- ⇒Need in-field detection, diagnosis, repair, and recovery
- Reliability problem pervasive across many markets
 - Traditional redundancy solutions (e.g., nMR) too expensive
 - ⇒ Need low-cost solutions for multiple failure sources
 - * Must incur low area, performance, power overhead

SWAT: Low-Cost Hardware Reliability

SWAT Observations

- Need handle only hardware faults that propagate to software
- Fault-free case remains common, must be optimized

SWAT Approach

⇒ Watch for software anomalies (symptoms)

Zero to low overhead "always-on" monitors

Diagnose cause after symptom detected

May incur high overhead, but rarely invoked

SWAT Framework Components

Challenge

Checkpoint Shown to work well for single-threaded apps Does SWAT approach work on multithreaded apps?

uarch-level Fault Diagnosis (TBFD)
[Li et.al. DSN'09]

Challenge: Data sharing in multithreaded apps

Multithreaded apps share data among threads

- Does symptom detection work?
- Symptom causing core may not be faulty
 - How to diagnose faulty core?

Contributions

- Evaluate SWAT detectors on multithreaded apps
 - Low Silent Data Corruption rate for multithreaded apps
 - Observed symptom from fault-free cores
- Novel fault diagnosis for multithreaded apps
 - Identifies the faulty core despite error propagation
 - Provides high diagnosability

Outline

- Motivation
- mSWAT Detection
- mSWAT Diagnosis
- Results
- Summary and Future Work

mSWAT Fault Detection

- SWAT Detectors:
 - Low-cost monitors to detect anomalous sw behavior
 - Incur near-zero perf overhead in fault-free operation

Symptom detectors provide low Silent Data Corruption rate

SWAT Fault Diagnosis

- Rollback/replay on same/different core
 - Single-threaded application on multicore

Challenges

Rollback/replay on same/different core

Extending SWAT Diagnosis to Multithreaded Apps

- Assumptions: In-core faults, single core fault model
- Naïve extension N known good cores to replay the trace
 - Too expensive area
 - Requires full-system deterministic replay
- Simple optimization One spare core

- Not scalable, requires N full-system deterministic replays
- High hardware overhead requires a spare core
- Single point of failure spare core

Digging Deeper

Hardware costs?

Enabling Isolated Deterministic Replay

- Recording thread inputs sufficient similar to BugNet
 - Record all retiring loads values

Digging Deeper (Contd.)

Hardware costs?

Identifying Divergence

- Comparing all instructions ⇒ Large buffer requirement
- Faults corrupt software through memory and control instrns
 - Capture memory and control instructions

Digging Deeper (Contd.)

What info to capture to enable isolated deterministic replay? How to identify divergence? Replay & Isolated **Symptom Faulty Look for** capture fault deterministic divergence core detected activating trace replay **Trace Buffer Hardware costs?**

Hardware Costs

What if the faulty core subverts the process?

Key Idea: On a divergence two cores take over 26

Trace Buffer Size

- Long detection latency ⇒ large trace buffers (8MB/core)
 - Need to reduce the size requirement
 - ⇒ Iterative Diagnosis Algorithm

Experimental Methodology

- Microarchitecture-level fault injection
 - GEMS timing models + Simics full-system simulation
 - Six multithreaded applications on OpenSolaris
 - * 4 Multimedia apps and 1 each from SPLASH and PARSEC
 - 4 core system running 4-threades apps
- Faults in latches of 7 µarch units
 - Permanent (stuck-at) and transients faults

Experimental Methodology

Detection:

Metrics: SDC Rate, detection latency

Diagnosis:

- Iterative algorithm with 100,000 instrns in each iteration
 - Until divergence or 20M instrns
- Deterministic replay is native execution
 - Not firmware emulated
- Metrics: Diagnosability, overheads

Results: mSWAT Detection Summary

- SDC Rate: Only 0.2% for permanents & 0.55% for transients
- Detection Latency: Over 99% detected within 10M instrns

Results: mSWAT Detection Summary

- SDC Rate: Only 0.2% for permanents & 0.55% for transients
- Detection Latency: Over 99% detected within 10M instrns

Results: mSWAT Diagnosability

- Over 95% of detected faults are successfully diagnosed
- All faults detected in fault-free core are diagnosed
- Undiagnosed faults: 88% did not activate faults

Results: mSWAT Diagnosis Overheads

- Diagnosis Latency
 - 98% diagnosed <10 million cycles (10ms in 1GHz system)
 - 93% were diagnosed in 1 iteration
 - * Iterative approach is effective
- Trace Buffer size
 - 96% require <400KB/core
 - * Trace buffer can easily fit in L2 or L3 cache

mSWAT Summary

- Detection: Low SDC rate, detection latency
- Diagnosis identifying the faulty core
 - Challenges: no known good core, deterministic replay
 - High diagnosability with low diagnosis latency
 - Low Hardware overhead Firmware based implementation
 - Scalable maximum 3 replays for any system
- Future Work:
 - Reducing SDCs, detection latency, recovery overheads
 - Extending to server apps; off-core faults
 - Validation on FPGAs (w/ Michigan)