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Motivation 

• Hardware will fail in-the-field due to several reasons 

 

 

 
 

 

 Need in-field detection, diagnosis, recovery, repair 

 

• Reliability problem pervasive across many markets 

– Traditional redundancy solutions (e.g., nMR) too expensive 

 Need low-cost solutions for multiple failure sources 

 Must incur low area, performance, power overhead 

Transient errors 

(High-energy particles ) 
Wear-out 

(Devices are weaker) 

Design Bugs 
… and so on 



Observations 

• Need handle only hardware faults that propagate to software 

• Fault-free case remains common, must be optimized 

  Watch for software anomalies (symptoms) 

–  Zero to low overhead “always-on” monitors 

       Diagnose cause after symptom detected  

− May incur high overhead, but rarely invoked 

 SWAT: SoftWare Anomaly Treatment 



SWAT Framework Components 

• Detection: Symptoms of software misbehavior 

• Diagnosis: Rollback/replay on multicore 

• Recovery: Checkpoint/rollback, output buffering 

• Repair/reconfiguration: Redundant, reconfigurable hardware 

• Flexible control through firmware 
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SWAT Contributions So Far 

In-situ diagnosis  
[DSN’08] 

Very low-cost detectors, 99+% coverage 
[ASPLOS’08, DSN’08] 
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Accurate fault modeling 
[HPCA’09]  

Multithreaded  workloads  
[MICRO’09] 



• Off-core faults 

• Client/server interactions 

• Exploit safe parallel languages 

– DeNovo + Deterministic Parallel Java for safe parallelism 

– Will explore for resiliency 

SWAT on Multicore and Distributed Systems 
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•  Leverage app knowledge and structure for s/w reliability 

–  Can improve both SDCs and recovery 

E.g., stateless recovery for server threads, 

             transactional semantics for clients, 

              assertions in production code 

 

Application-Driven Resiliency 

Fault-free Faulty 



•  FPGA prototype with Michigan CrashTest 

–  Realistic fault models 

–  Full multicore implementation with firmware 

 

Validation and Prototype 



Thank You 


