
Software Managed Resiliency

Siva Hari

Lei Chen, Xin Fu, Pradeep Ramachandran, Swarup Sahoo,

Rob Smolenski, Sarita Adve

Department of Computer Science

University of Illinois at Urbana-Champaign

swat@cs.illinois.edu

Motivation

• Hardware will fail in-the-field due to several reasons

 Need in-field detection, diagnosis, recovery, repair

• Reliability problem pervasive across many markets

– Traditional redundancy solutions (e.g., nMR) too expensive

 Need low-cost solutions for multiple failure sources

 Must incur low area, performance, power overhead

Transient errors

(High-energy particles)
Wear-out

(Devices are weaker)

Design Bugs
… and so on

Observations

• Need handle only hardware faults that propagate to software

• Fault-free case remains common, must be optimized

  Watch for software anomalies (symptoms)

– Zero to low overhead “always-on” monitors

 Diagnose cause after symptom detected

− May incur high overhead, but rarely invoked

 SWAT: SoftWare Anomaly Treatment

SWAT Framework Components

• Detection: Symptoms of software misbehavior

• Diagnosis: Rollback/replay on multicore

• Recovery: Checkpoint/rollback, output buffering

• Repair/reconfiguration: Redundant, reconfigurable hardware

• Flexible control through firmware

Diagnosis

Fault Error Symptom

detected
Recovery

Repair

Checkpoint Checkpoint

SWAT Contributions So Far

In-situ diagnosis
[DSN’08]

Very low-cost detectors, 99+% coverage
[ASPLOS’08, DSN’08]

Diagnosis

Fault Error Symptom

detected
Recovery

Repair

Checkpoint Checkpoint

Accurate fault modeling
[HPCA’09]

Multithreaded workloads
[MICRO’09]

• Off-core faults

• Client/server interactions

• Exploit safe parallel languages

– DeNovo + Deterministic Parallel Java for safe parallelism

– Will explore for resiliency

SWAT on Multicore and Distributed Systems

Simulated

Network

Simics

Simulated

Server

Simulated

Client

Application
OS

Hardware

Application
OS

Hardware
Fault

TA TB TC TD

TD TA TB TC

TC TD TA TB

• Leverage app knowledge and structure for s/w reliability

– Can improve both SDCs and recovery

E.g., stateless recovery for server threads,

 transactional semantics for clients,

 assertions in production code

Application-Driven Resiliency

Fault-free Faulty

• FPGA prototype with Michigan CrashTest

– Realistic fault models

– Full multicore implementation with firmware

Validation and Prototype

Thank You

