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Motivation 

• Reliability is a major challenge 

• Shipped hardware is likely to fail in the field 

 

 

 

 

• Reliability problem pervasive across many markets 

– Traditional redundancy solutions (e.g., nMR) expensive 

 

• Need in-field low-cost detection, diagnosis, and repair 
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. . . 

Transient Errors Wear-out Failures Design Bugs 



Software-level Resiliency 

• Software-level anomaly detectors are low-cost & effective 

– Detect faults by monitoring software misbehavior 

• Evaluating resiliency solutions through fault injections 
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Software-level Resiliency 

• Software-level anomaly detectors are low-cost & effective 

– Detect faults by monitoring software misbehavior 

• Evaluating resiliency solutions through fault injections 
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Software-level Resiliency 

• Software-level anomaly detectors are low-cost & effective 

– Detect faults by monitoring software misbehavior 

• Evaluating resiliency solutions through fault injections 

 

 

 

 

• Each application has 100s of billions of fault sites 

• Performing fault injections on all is impossible 

• Statistical approach: study 10s of thousands of faults 

– Cannot provide guarantees 
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Challenges 

• Goal: Analyzing all transient faults affecting an application 

– Provide guarantees to the detection mechanisms 

 

• Do we need fault injections for all the faults? 

• Can we reduce the # of faults that require detailed analysis? 

• How to analyze all faults with fewer fault injections? 
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Contributions 

• Prune faults with predictable outcomes 

– Outcome: Detected, Masked, or SDC 

– Such faults do not need fault injections 

• Prune equivalent faults 

– Faults that behave similarly 

• Only faults with unknown outcomes need fault injections 

– Developed pruning techniques to ensure they are small 

– Validating pruning techniques is ongoing work 

 

• Analyze few faults to estimate behavior of all 
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Outline 

• Motivation 

• Fault Model 

• Pruning Techniques 

• Results 

• Conclusion and Future Work 
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Fault Model 

• Transient faults 

– Single bit flips 

• Faults in ISA-visible instruction-level states 

 

• Example: 

– Instruction: opcode rd, rs1, rs2 

• One bit faults in rd, rs1, and rs2 

– Instructions: opcode [addr+imm], rd 

• One bit faults in rd, addr, imm, (addr)[addr+imm], 

(value)[addr+imm] 
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Relyzer Overview 

• List all faults 

 

• Prune predictable faults 

 

• Prune equivalent faults 
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Pruning Predictable Faults 

• Watch for out of bounds accesses 

– SWAT detects such accesses 

 

• Prune out of bounds accesses 

– Memory addresses (     &     ) 

– Branch targets (     ) 

 

• Boundaries obtained by profiling 
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Pruning Equivalent Faults 

• Key Insights: 

– Faults in different loop iterations may be equivalent 

 

 

 

 

 

 

 

– Stores and Branches have major effects on application 
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Faults in Store Instructions 

• Show     stores to be equivalent 

• Faults in     instructions are also 

equivalent 

 

• How to show store equivalence? 
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Data flow leading to a store 



Equalizing store instructions 

• Criterion that makes stores equal: effect of faulty store 

 

 

 

• Use heuristics to measure store effects 
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Equalizing store instructions 

• Criterion that makes stores equal: effect of faulty store 

 

 

 

• Use heuristics to measure store affects 

– Location of every use + dynamic instruction flow info 

 

 

 

 

15 

Store 

Memory      

PC1 PC2 

Load Load 

Store 

PC1 PC2 

Load Load 

Set of all 

stores 

Set of 

unique 

stores 

Similar 

store effects 

Instance 1 

Instance 2 



Faults in Branches 

• Faults in    section affect only the direction of branch 

– No other side effects 

• For     section we need to know 

– # of faults resulting in right branch direction? 

• Distribution of faults 

– Outcome of the wrong direction 

 

 

• For distribution, inject faults exhaustively in one iteration 

• For outcome, inject just one fault in the condition code 
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Other Pruning Techniques 

• Constant Propagation 

– Propagate faults through instructions using constants 

– Similar to the compiler optimization technique 

• Def-Use Analysis 

 

 

– Consider faults only in the uses  

– Prune faults from def 

• Statistical Pruning 

– Remaining faults in branch instructions 

• In target of dynamic branch 

• One direction fault in dynamic conditional branch 17 

1. OR r1, 0x1 → r2 

2.  ADD r2, r3  → r4 



Evaluating Fault Pruning Techniques 
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Application Number of 

Instructions 

Number 

of Faults 

LU 

(SPLASH-2) 
2.1 Billion 310 Billion 

FFT 

(SPLASH-2) 
7.1 Billion 111 Billion 

Blackscholes 

(PARSEC) 
1.7 Billion 214 Billion 

Swaptions 

(PARSEC) 
2.7 Billion 534 Billion 

Total Faults = 1.17 Trillion 



Results 

• Pruned: 99.9979% 

• Remaining: 0.0021% (25 Million) 
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Conclusions 

• Analyzing all transient faults effecting an application 

• Reduced the number of fault injection experiments 

– Developed efficient pruning techniques 

• Predict outcome without fault injection 

• Show equivalence between several faults 

 

• Pruned hardware faults by 5 orders of magnitude 

– Only 0.0021% of faults remaining 
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Ongoing and Future Work 

• Developed efficient fault injection framework 

• Evaluating the accuracy of developed pruning techniques 

– Current results show an average inaccuracy of only 5% 

 

• Compute effective SDC rate  

• List and analyze SDC causing faults 

• Identify SDC prone sections of applications 

– Devise low-cost detectors (software or hardware) 
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