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Hardware reliability is a challenge

Overhead (perf., power, area)

A

Full reliability at low-cost
Tunable reliability vs. overhead)

Goals:

— Transient (soft) errors are a major problem
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Fault Outcomes

Transient fault

‘ q-)i(e.g.,bitﬁrlilea— Tf%%i{%wt (S

— fault

Symptom detectors (SWAT): -

Fatal traps, kernel panic, etc. _, ]
Betection Silent Data Corruption

(SDC)

Masked

How to convert SDCs to detections?



SDCs to Detections

4 I
APPLICATION
Error "
Detectors ——
—

o

Silent Data Corruption
(SDC)

« Add new detectors in error propagation path?

— SDC coverage: Fraction of all SDCs converted to detections

« Will it be low-cost?



Key Challenges

What to SDC-causing fault sites
protect? Identified using Relyzer [ASPLOS’12]

Low-cost Detectors

Many errors propagate to

Where to place?
few program values

How to

Protect?

What detectors? Program-level properties tests

Uncovered

fault-sites? Selective instruction-level duplication




Contributions

« Discovered common program properties around most SDC-causing sites

* Devised low-cost program-level detectors
— Average SDC reduction of 84%

— Average execution overhead 10%

« New detectors + selective duplication = Tunable resiliency at low-cost
— Found near optimal detectors for any SDC target

— Lower cost than pure redundancy for all SDC targets
= E.g.,12% vs. 30% @ 90% SDC reduction



« Categorizing and protecting SDC-causing sites
* Tunable resilience vs. overhead

* Methodology

* Results

« Conclusions



« Categorizing and protecting SDC-causing sites
— Loop incrementalization
— Registers with long life

— Application-specific behavior
* Tunable resilience vs. overhead
» Methodology
* Results

« Conclusions



* Identify where to place the detectors and what detectors to use

* Placement of detectors (where)
— Many errors propagate to few program values

* End of loops and function calls

 Detectors (what)
— Test program-level properties

= E.g., comparing similar computations and checking value equality

« Fault model

— Single bit flips in integer arch. registers



Loop Incrementalization

C Code ASM Code
Array a, b; \ rA = base addr. of a \
For (i=0 to n) { rB = base addr. of b

L: load r1 «—[rA]
a[i] = b[i] + a[i]

g} _//

load r2 < [rB]

store r3 — [rA]

[ add rA=rA+ 0x8]

add rB=rB + 0x8
add i=i+1
branch (i<n) L /




Loop Incrementalization

C Code ASM Code
Array a, b; \ rA = base addr. of a \
For (i=0 to n) { rB = base addr.{of b ( Collect initial values ]
L: load 1 [A] ||__OfrA rB,andi

ali] = bli] + alil

[ SDC-hot app sites ] [ add rA=rA + 0x3J

load r2 < [rB]

store r3 — [rA]

add rB=rB + 0x8 )| [ What: Property checks
- s\ add i=i+1 onrA, rB, and i
Where: Errors from all branch (i<n) L /
iterations propagate — < Diff in rA = Diff in rB
\here in few quantltlesj \Elff inrA=8 x Diff in |)

No loss in coverage - lossless



Registers with Long Life

« Some long lived registers are prone to SDCs R1 definition

/ Copy

Use 1 Iii

Use 2
- Compare

* For detection

— Duplicate the register value at its definition i

— Compare its value at the end of its life Lif!e
time
* Noloss in coverage - lossless i
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Application-Specific Behavior

* Exponential function ! !
few - ~Y - N

— Where: End of-every function invocations exp exp
— What: Re-execution or inverse function (/og)

— Periodic test on accumulated quantities I=

— Accumulate input and output with + and X 4

a p(i1+i2) _ il 5 oi2 1\ j

« Some coverage may be compromised — lossy
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Application-Specific Behavior (Contd.)

: : _ Parity
« Bit Reverse function in (0011) P,
— Where: End of function '
Bit
_ - — re- ion?
What: Challenge - re-execution’ Reverse Compare
— Approach: Parity of in & out should match
l Parity

out (1100)—— P

out

* Other detectors: Range checks
- Value < Upper bound

- Lower bound < Value < Upper bound

« Some coverage may be compromised — lossy
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Tunable Resiliency vs. Overhead

«  What if our detectors do not cover all SDC-causing sites?

— Use selective instruction-level redundancy

« What if our low-overhead is still not tolerable but lower resiliency is?

— Tunable resiliency vs. overhead
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ldentifying Near Optimal Detectors: Naive Approach

Example: Target SDC coverage = 60%

Overhead =10% SDC coverage

Sample 1 SF > 50%

Overhead = 20%

Bag of detectors Sample 2 SFI > 65%

Tedious and time consuming
16



ldentifying Near Optimal Detectors: Our Approach

1. Set attributes, enabled by Relyzer [ASPLOS'12]

2. Dynamic programming
Constraint: Total SDC covg. 2 60%
Objective: Minimize overhead

Selected
Detectors

Bag of detectors

Overhead = 9%

Obtained SDC coverage vs. Performance trade-off curves
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Methodology

 Six applications from SPEC 2006, Parsec, and SPLASH2
 Fault model: single bit flips in int arch registers at every dynamic instr
« Ran Relyzer, obtained SDC-causing sites, examined them manually

* Our detectors
— Implemented in architecture simulator

— Overhead estimation: Num assembly instrns needed

« Selective redundancy

— Overhead estimation: 1 extra instrn for every uncovered instrn

» Lossy detectors’ coverage
— Statistical fault injections (10,000)
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Categorization of SDC-causing Sites

100
90
80 ~ OUncovered
70
4 60 i
a 5 O App specific
(75
= 40 e N
30 | ™ Registers with
20 long life
10 -
M Loop

Incrementalization)

LU

FFT
Water

Added Added
Lossless Lossy
GG Detectors

Blackscholes
Libquantum
Swaptions

 Categorized >88% SDC-causing sites
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SDC coverage

100%
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80% |
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60% |
50% |-
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0%

SDC Coverage

Blackscholes
FFT
Libquantum
LU
Swaptions
Water

« 84% average SDC coverage (67% - 92%)
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SDC coverage
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« 84% average SDC coverage (67% - 92%)
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Execution Overhead
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« 10% average overhead (0.1% - 18%)

22



Execution Overhead
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« 10% average overhead (0.1% - 18%)
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SDC Coverage vs. Overhead Curve
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« Consistently better over pure (selective) instruction-level duplication
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Conclusions

* Reduction in SDCs is crucial for low-cost reliability
« Discovered common program properties around most SDC-causing sites

* Devised low-cost program-level detectors

— 84% avg. SDC coverage at 10% avg. cost

« New detectors + selective duplication = Tunable resiliency at low-cost
— Found near optimal detectors for any SDC target

— Lower cost than pure redundancy for all SDC targets

* Future directions
— More applications and fault models

— Automating detectors’ placement and derivation
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