
Low-cost Program-level Detectors for

Reducing Silent Data Corruptions

Siva Hari†, Sarita Adve†, and Helia Naeimi‡

†University of Illinois at Urbana-Champaign,

‡Intel Corporation

swat@cs.illinois.edu

Motivation

• Hardware reliability is a challenge

– Transient (soft) errors are a major problem
Soft Error

2

Redundancy

O
ve

rh
ea

d
 (

p
er

f.
, p

o
w

er
, a

re
a)

How?

Tunable

reliability

Reliability

Very high

reliability at

low-cost Symptom-

based

Detect errors using

symptom monitors

Fatal
Traps

Kernel
Panic

App
Abort

Goals:

Full reliability at low-cost

Tunable reliability vs. overhead

Fault Outcomes

3

APPLICATION
.

.

.

Output

Symptom

of Fault

Transient

fault

APPLICATION
.

.

.

Output

Transient fault

(e.g., bit 4 in R2)

APPLICATION
.

.

.

Output Symptom detectors (SWAT):

Fatal traps, kernel panic, etc.

Output

Masked Silent Data Corruption

(SDC)

Transient

fault

Detection

How to convert SDCs to detections?

SDCs to Detections

4

• Add new detectors in error propagation path?

– SDC coverage: Fraction of all SDCs converted to detections

• Will it be low-cost?

APPLICATION
.

.

.

Output Output

Silent Data Corruption

(SDC)

APPLICATION
.

. Error

Detection Error

Detectors

Key Challenges

5

What to

protect?

SDC - causing fault sites

Identified using Relyzer [ASPLOS’12]

How to

Protect?

Low - cost Detectors

Where to place?
Many errors propagate to

few program values

What detectors? Program - level properties tests

Uncovered

fault - sites?
Selective instruction - level duplication

Contributions

• Discovered common program properties around most SDC-causing sites

• Devised low-cost program-level detectors

– Average SDC reduction of 84%

– Average execution overhead 10%

• New detectors + selective duplication = Tunable resiliency at low-cost

– Found near optimal detectors for any SDC target

– Lower cost than pure redundancy for all SDC targets

 E.g., 12% vs. 30% @ 90% SDC reduction

6

Outline

• Motivation and introduction

• Categorizing and protecting SDC-causing sites

• Tunable resilience vs. overhead

• Methodology

• Results

• Conclusions

7

Outline

• Motivation and introduction

• Categorizing and protecting SDC-causing sites

– Loop incrementalization

– Registers with long life

– Application-specific behavior

• Tunable resilience vs. overhead

• Methodology

• Results

• Conclusions

8

Insights

• Identify where to place the detectors and what detectors to use

• Placement of detectors (where)

– Many errors propagate to few program values

 End of loops and function calls

• Detectors (what)

– Test program-level properties

 E.g., comparing similar computations and checking value equality

• Fault model

– Single bit flips in integer arch. registers

9

Loop Incrementalization

10

rA = base addr. of a

rB = base addr. of b

L: load r1 ← [rA]

 . . .

 load r2 ← [rB]

 . . .

 store r3 → [rA]

 . . .

 add rA = rA + 0x8

 add rB = rB + 0x8

 add i = i + 1

 branch (i<n) L

Array a, b;

For (i=0 to n) {

 . . .

 a[i] = b[i] + a[i]

 . . .

}

C Code ASM Code

Loop Incrementalization

11

rA = base addr. of a

rB = base addr. of b

L: load r1 ← [rA]

 . . .

 load r2 ← [rB]

 . . .

 store r3 → [rA]

 . . .

 add rA = rA + 0x8

 add rB = rB + 0x8

 add i = i + 1

 branch (i<n) L

Array a, b;

For (i=0 to n) {

 . . .

 a[i] = b[i] + a[i]

 . . .

}

C Code ASM Code

Where: Errors from all

iterations propagate

here in few quantities

What: Property checks

on rA, rB, and i

Diff in rA = Diff in rB

Diff in rA = 8 × Diff in i

Collect initial values

of rA, rB, and i

SDC-hot app sites

No loss in coverage - lossless

Registers with Long Life

• Some long lived registers are prone to SDCs

• For detection

– Duplicate the register value at its definition

– Compare its value at the end of its life

• No loss in coverage - lossless

Life
time

12

R1 definition

Copy

Use 1

Compare
Use 2

Use n

.

.

.

Application-Specific Behavior

• Exponential function

– Where: End of every function invocation

– What: Re-execution or inverse function (log)

– Periodic test on accumulated quantities

– Accumulate input and output with + and ×

 𝒆(𝒊𝟏+𝒊𝟐) = 𝒆𝒊𝟏 × 𝒆𝒊𝟐

• Some coverage may be compromised – lossy

13

exp

𝒊𝒏

𝒐𝒖𝒕

𝑰 = 𝑰 + 𝒊𝒏

𝑶 = 𝑶 × 𝒐𝒖𝒕

exp

𝑶′ ==

𝑰

𝑶

few
s

Application-Specific Behavior (Contd.)

• Bit Reverse function

– Where: End of function

– What: Challenge – re-execution?

– Approach: Parity of in & out should match

• Other detectors: Range checks

– 𝑽𝒂𝒍𝒖𝒆 ≤ 𝑼𝒑𝒑𝒆𝒓 𝒃𝒐𝒖𝒏𝒅

– 𝑳𝒐𝒘𝒆𝒓 𝒃𝒐𝒖𝒏𝒅 ≤ 𝑽𝒂𝒍𝒖𝒆 ≤ 𝑼𝒑𝒑𝒆𝒓 𝒃𝒐𝒖𝒏𝒅

• Some coverage may be compromised – lossy

14

Bit

Reverse

𝒊𝒏 (𝟎𝟎𝟏𝟏)

𝒐𝒖𝒕 (𝟏𝟏𝟎𝟎)

Compare

Parity

Parity

𝑷𝒊𝒏

𝑷𝒐𝒖𝒕

Tunable Resiliency vs. Overhead

• What if our detectors do not cover all SDC-causing sites?

– Use selective instruction-level redundancy

• What if our low-overhead is still not tolerable but lower resiliency is?

– Tunable resiliency vs. overhead

15

Identifying Near Optimal Detectors: Naïve Approach

16

Bag of detectors

SDC coverage

SFI 50%

Example: Target SDC coverage = 60%

Sample 1

Overhead = 10%

Sample 2

Overhead = 20%

SFI 65%

Tedious and time consuming

Identifying Near Optimal Detectors: Our Approach

17

Bag of detectors

Selected

Detectors

SDC Covg.= X%

Overhead = Y%

Detector

1. Set attributes, enabled by Relyzer [ASPLOS’12]

2. Dynamic programming

 Constraint: Total SDC covg. ≥ 60%

 Objective: Minimize overhead

Overhead = 9%

Obtained SDC coverage vs. Performance trade-off curves

Methodology

• Six applications from SPEC 2006, Parsec, and SPLASH2

• Fault model: single bit flips in int arch registers at every dynamic instr

• Ran Relyzer, obtained SDC-causing sites, examined them manually

• Our detectors

– Implemented in architecture simulator

– Overhead estimation: Num assembly instrns needed

• Selective redundancy

– Overhead estimation: 1 extra instrn for every uncovered instrn

• Lossy detectors’ coverage

– Statistical fault injections (10,000)

18

Categorization of SDC-causing Sites

• Categorized >88% SDC-causing sites

19

Added

Lossy

Detectors

0

10

20

30

40

50

60

70

80

90

100

B
la

ck
sc

h
o

le
s

F
F

T

L
ib

q
u

an
tu

m L
U

S
w

ap
ti

o
n

s

W
at

er

%
 S

D
C

s

Uncovered

App specific

Registers with
long life

Loop
Incrementalization

Added

Lossless

Detectors

SDC coverage

• 84% average SDC coverage (67% - 92%)

20

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
la

ck
sc

h
o

le
s

F
F

T

L
ib

q
u

an
tu

m L
U

S
w

ap
ti

o
n

s

W
at

er

A
ve

ra
g

e

S
D

C
 C

o
ve

ra
g

e

SDC coverage

21

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
la

ck
sc

h
o

le
s

F
F

T

L
ib

q
u

an
tu

m L
U

S
w

ap
ti

o
n

s

W
at

er

A
ve

ra
g

e

S
D

C
 C

o
ve

ra
g

e

Lossy Lossless

• 84% average SDC coverage (67% - 92%)

Execution Overhead

• 10% average overhead (0.1% - 18%)

22

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

B
la

ck
sc

h
o

le
s

F
F

T

L
ib

q
u

an
tu

m L
U

S
w

ap
ti

o
n

s

W
at

er

A
ve

ra
g

e

E
xe

cu
ti

o
n

 O
ve

rh
ea

d

Execution Overhead

• 10% average overhead (0.1% - 18%)

23

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

B
la

ck
sc

h
o

le
s

F
F

T

L
ib

q
u

an
tu

m L
U

S
w

ap
ti

o
n

s

W
at

er

A
ve

ra
g

e

E
xe

cu
ti

o
n

 O
ve

rh
ea

d

Lossy Lossless

SDC Coverage vs. Overhead Curve

• Consistently better over pure (selective) instruction-level duplication

24

Our detectors + Redundancy Pure Redundancy

0%

10%

20%

30%

40%

50%

60%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

E
xe

cu
ti

o
n

 O
ve

rh
ea

d

SDC Coverage

18%

90%

24%

99%

Conclusions

• Reduction in SDCs is crucial for low-cost reliability

• Discovered common program properties around most SDC-causing sites

• Devised low-cost program-level detectors

– 84% avg. SDC coverage at 10% avg. cost

• New detectors + selective duplication = Tunable resiliency at low-cost

– Found near optimal detectors for any SDC target

– Lower cost than pure redundancy for all SDC targets

• Future directions

– More applications and fault models

– Automating detectors’ placement and derivation

25

