
Relyzer: Exploiting Application-level Fault

Equivalence to Analyze Application Resiliency to

Transient Faults

Siva Hari1, Sarita Adve1, Helia Naeimi2, Pradeep Ramachandran2

1 University of Illinois at Urbana-Champaign,

2 Intel Corporation

swat@cs.illinois.edu

Motivation

• Hardware reliability is a major challenge

– Transient (soft) errors are a major problem

– Need in-field low-cost reliability solution

• Traditional redundancy based solutions are expensive

• Alternative: Treat s/w anomalies as symptoms of h/w faults

– Detect faults using low-cost software symptom monitors

– Diagnosis, recovery more complex, but infrequent

• Efficacy depends heavily on application

How to evaluate application-level resiliency?

Soft Error

2

APPLICATION
.

.

.

Output

Fault Outcomes

3

Fault-free

execution

APPLICATION
.

.

.

Output

Fault Outcomes

4

Fault-free

execution Masked

APPLICATION
.

.

.

Output

Transient Fault

e.g., bit 4 in R1

Faulty executions

APPLICATION
.

.

.

Output

Fault Outcomes

5

Fault-free

execution

Faulty executions

Masked

APPLICATION
.

.

.

Output

APPLICATION
.

.

.

Output
Symptom detectors (SWAT):

Fatal traps, assertion violations, etc.

Symptom

of Fault

Detection

Transient fault

 again in bit 4 in R1

Fault Outcomes

APPLICATION
.

.

.

Output

Fault-free

execution Masked

APPLICATION
.

.

.

Output

APPLICATION
.

.

.

Output

Symptom

of Fault

APPLICATION
.

.

.

Output

6

X

Detection SDC

Faulty executions

Silent Data

Corruption (SDC)

Fault Outcomes

APPLICATION
.

.

.

Output

Fault-free

execution Masked

APPLICATION
.

.

.

Output

APPLICATION
.

.

.

Output

Symptom

of Fault

APPLICATION
.

.

.

Output

7

Detection SDC

Faulty executions

Goal: Lower SDC rate to zero

Silent Data Corruptions

APPLICATION
.

.

.

Output

8

SDC
• Symptom detectors are effective, BUT

– SDC rate is still >0%

• Two key challenges

– Which application fault sites cause SDCs?

– How to convert SDCs to detections?

Silent Data Corruptions

APPLICATION
.

.

.

Output

9

SDC
• Symptom detectors are effective, BUT

– SDC rate is still >0%

• Two key challenges

– Which application fault sites cause SDCs?

 Relyzer lists SDC sites

– How to convert SDCs to detections?

 Relyzer guides detectors [DSN’12]

Evaluating Application-Level Resiliency

Statistical Fault Injection

Injections in few sites

Cannot find all SDC sites

10

APPLICATION
.

.

.

Output

APPLICATION
.

.

.

Output

Evaluating Application-Level Resiliency

Relyzer: Analyze all app fault sites with few injections

Statistical Fault Injection

Injections in few sites

Cannot find all SDC sites

Ideal Injection

Injections in ALL sites

Find ALL SDC sites

11

Goal:

Find ALL SDC sites

injections in few sites

with

APPLICATION
.

.

.

Output

Relyzer Approach

12

Prune fault sites

• Show application-level fault equivalence

• Predict fault outcomes without injections

Detailed injections for remaining faults

Equivalence

Classes
Pilots

Contributions

• Relyzer: A tool for complete application resiliency analysis

• Developed novel fault pruning techniques

– 3 to 6 orders of magnitude fewer injections for most apps

– 99.78% app fault sites pruned

 Only 0.04% represent 99% of all fault sites

 Can identify all potential SDC causing fault sites
13

APPLICATION
.

.

.

Output

APPLICATION
.

.

.

Output

Outline

• Motivation

• Pruning Techniques

• Methodology and Results

• Conclusions and Ongoing Work

14

Outline

• Motivation

• Pruning Techniques

– Application-level fault equivalence

– Predictable faults

• Methodology and Results

• Conclusions and Ongoing Work

15

Outline

• Motivation

• Pruning Techniques

– Application-level fault equivalence

 Control flow equivalence

 Store equivalence

 Definition to first use equivalence

– Predictable faults

• Methodology and Results

• Conclusions and Ongoing Work

16

Control Flow Equivalence

Insight: Faults flowing through similar control paths may behave similarly

17

CFG
X

Control Flow Equivalence

Insight: Faults flowing through similar control paths may behave similarly

18

CFG

Control Flow Equivalence

Insight: Faults flowing through similar control paths may behave similarly

19

CFG

Faults in X that take paths behave similarly

Heuristic: Use direction of next 5 branches

X

Store Equivalence

• Insight: Faults in stores may be similar if stored values are used similarly

• Heuristic to determine similar use of values:

– Same number of loads use the value

– Loads are from same PCs

20

Store

Memory

PC1 PC2

Load Load

Store

PC1 PC2

Load Load

Instance 1

Instance 2

PC

PC

Def to First-Use Equivalence

• Fault in first use is equivalent to fault in def  prune def

 r1 = r2 + r3

 r4 = r1 + r5

 …

• If there is no first use, then def is dead  prune def

21

Def

First use

Pruning Predictable Faults

• Prune out-of-bounds accesses

– Detected by symptom detectors

– Memory addresses not in &

• Boundaries obtained by profiling

Reserved

Stack

Reserved

Heap

Data

Text

SPARC Address Space Layout

0x0

0x100000000

0x80100000000

0xfffff7ff00000000

0xffffffffffbf0000

22

Methodology

• Pruning

– 12 applications (from SPEC 2006, Parsec, and Splash 2)

• Fault model

– Where (hardware) and when (application) to inject transient faults

– Where: Hardware fault sites

 Faults in integer arch registers

 Faults in output latch of address generation unit

– When: Every dynamic instruction that uses these units

23

Pruning Results

• 99.78% of fault sites are pruned

• 3 to 6 orders of magnitude pruning for most applications

– For mcf, two store instructions observed low pruning (of 20%)

• Overall 0.004% fault sites represent 99% of total fault sites

24

99.0%

99.2%

99.4%

99.6%

99.8%

100.0%

B
la

ck
sc

h
o

le
s

F
lu

id
an

im
at

e

S
tr

ea
m

cl
u

st
er

S
w

ap
ti

o
n

s

F
F

T

L
U

O
ce

an

W
at

er

G
C

C

L
ib

q
u

an
tu

m

M
cf

O
m

n
et

+
+

T
o

ta
l

Parsec 2.1 Splash 2 SPEC 2006

%
 o

f
al

l f
au

lt
 s

it
es

Contribution of Pruning Techniques

25

Both equivalence and prediction based techniques are effective

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Average

Control

Store

Def-Use

Prediction-
based

PILOTS

SAMPLE

Methodology: Validating Pruning Techniques

• Validation for Control and Store equivalence pruning

26

APPLICATION
.

.

.

Output
Compute Prediction Rate

Equivalence

Classes

Validating Pruning Techniques

• Validated control and store equivalence

– >2M injections for randomly selected pilots, samples from equivalent set

• 96% combined accuracy (including fully accurate prediction-based pruning)

• 99% confidence interval with <5% error
27

90%

91%

92%

93%

94%

95%

96%

97%

Reg - Control Reg - Store Agen - Control Agen - Store Combined

Average Prediction Rate

Conclusions and Ongoing Work

• Relyzer: Novel fault pruning for application resiliency analysis

– 3 to 6 orders of magnitude fewer injections for most apps

 99.78% of fault sites pruned

– Only 0.004% represent 99% of all fault sites

 Average 96% validation

• Can list all SDC prone instructions and fault propagation path

– Guides low-cost detectors

– Ongoing work (to appear in DSN’12)

 Understand application properties responsible for SDCs

 Devise (automate) low-cost app-level detectors

 Quantifiable resilience vs. performance

28

Relyzer:

Exploiting Application-level Fault

Equivalence to Analyze Application

Resiliency to Transient Faults

Siva Hari1, Sarita Adve1, Helia Naeimi2, Pradeep Ramachandran2

1 University of Illinois at Urbana-Champaign,

2 Intel Corporation

swat@cs.illinois.edu

