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Motivation 

• Hardware reliability is a major challenge 

– Transient (soft) errors are a major problem 

– Need in-field low-cost reliability solution 
 

• Traditional redundancy based solutions are expensive 
 

• Alternative: Treat s/w anomalies as symptoms of h/w faults 

– Detect faults using low-cost software symptom monitors 

– Diagnosis, recovery more complex, but infrequent 
 

• Efficacy depends heavily on application 

How to evaluate application-level resiliency? 
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Fatal traps, assertion violations, etc. 
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Detection SDC 
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Goal: Lower SDC rate to zero 
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SDC 
• Symptom detectors are effective, BUT 

– SDC rate is still >0% 

 

• Two key challenges 

– Which application fault sites cause SDCs? 

– How to convert SDCs to detections? 
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SDC 
• Symptom detectors are effective, BUT 

– SDC rate is still >0% 

 

• Two key challenges 

– Which application fault sites cause SDCs?  

 Relyzer lists SDC sites 

– How to convert SDCs to detections?  

 Relyzer guides detectors [DSN’12] 



Evaluating Application-Level Resiliency 

Statistical Fault Injection 
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Evaluating Application-Level Resiliency 

Relyzer: Analyze all app fault sites with few injections 

Statistical Fault Injection 

 

Injections in few sites 

 

Cannot find all SDC sites 

Ideal Injection 

 

Injections in ALL sites 

 

Find ALL SDC sites 
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Prune fault sites  

 

• Show application-level fault equivalence 

 

• Predict fault outcomes without injections 

 

Detailed injections for remaining faults 

Equivalence  
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Contributions 

• Relyzer: A tool for complete application resiliency analysis 

• Developed novel fault pruning techniques 

– 3 to 6 orders of magnitude fewer injections for most apps 

– 99.78% app fault sites pruned 

 Only 0.04% represent 99% of all fault sites 

 

 

 

 

 

 

 Can identify all potential SDC causing fault sites 
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Outline 

• Motivation 

• Pruning Techniques 

• Methodology and Results 

• Conclusions and Ongoing Work 
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Outline 
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– Application-level fault equivalence 

 Control flow equivalence 
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Control Flow Equivalence 

Insight: Faults flowing through similar control paths may behave similarly  
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Control Flow Equivalence 

Insight: Faults flowing through similar control paths may behave similarly  
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CFG 

Faults in X that take    paths behave similarly 

 

Heuristic: Use direction of next 5 branches 
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Store Equivalence 

• Insight: Faults in stores may be similar if stored values are used similarly 

• Heuristic to determine similar use of values: 

– Same number of loads use the value 

– Loads are from same PCs 
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Def to First-Use Equivalence 

• Fault in first use is equivalent to fault in def   prune def 

  

  r1  =  r2  +  r3 

 

  r4  = r1  + r5 

 

  …  

 

• If there is no first use, then def is dead  prune def 
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Pruning Predictable Faults 

 

 

• Prune out-of-bounds accesses 

– Detected by symptom detectors 

– Memory addresses not in        & 

 

• Boundaries obtained by profiling 
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0xffffffffffbf0000 
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Methodology 

• Pruning 

– 12 applications (from SPEC 2006, Parsec, and Splash 2) 

• Fault model 

– Where (hardware) and when (application) to inject transient faults 

– Where: Hardware fault sites 

 Faults in integer arch registers 

 Faults in output latch of address generation unit 

– When: Every dynamic instruction that uses these units 
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Pruning Results 

• 99.78% of fault sites are pruned 

• 3 to 6 orders of magnitude pruning for most applications 

– For mcf, two store instructions observed low pruning (of 20%) 

• Overall 0.004% fault sites represent 99% of total fault sites 

 

24 

99.0%

99.2%

99.4%

99.6%

99.8%

100.0%

B
la

ck
sc

h
o

le
s

F
lu

id
an

im
at

e

S
tr

ea
m

cl
u

st
er

S
w

ap
ti

o
n

s

F
F

T

L
U

O
ce

an

W
at

er

G
C

C

L
ib

q
u

an
tu

m

M
cf

O
m

n
et

+
+

T
o

ta
l

Parsec 2.1 Splash 2 SPEC 2006

%
 o

f 
al

l f
au

lt
 s

it
es

 



Contribution of Pruning Techniques 
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Both equivalence and prediction based techniques are effective 
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PILOTS 

SAMPLE 

Methodology: Validating Pruning Techniques 

• Validation for Control and Store equivalence pruning 
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Validating Pruning Techniques 

• Validated control and store equivalence 

– >2M injections for randomly selected pilots, samples from equivalent set 

• 96% combined accuracy (including fully accurate prediction-based pruning) 

• 99% confidence interval with <5% error 
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Conclusions and Ongoing Work 

• Relyzer: Novel fault pruning for application resiliency analysis 

– 3 to 6 orders of magnitude fewer injections for most apps 

 99.78% of fault sites pruned 

– Only 0.004% represent 99% of all fault sites 

 Average 96% validation 

• Can list all SDC prone instructions and fault propagation path 

– Guides low-cost detectors 

– Ongoing work (to appear in DSN’12) 

 Understand application properties responsible for SDCs 

 Devise (automate) low-cost app-level detectors 

 Quantifiable resilience vs. performance 
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