
mSWAT: Low-Cost Hardware Fault Detection and Diagnosis for Multicore

Siva Kumar Sastry Hari, Manlap Li, Pradeep Ramachandran, Byn Choi and Sarita Adve

University of Illinois, Urbana-Champaign

Motivation

SoftWare Anomaly Treatment (SWAT): comprehensive reliability frame-work

Effective for HW faults in single-threaded apps

But multicore systems w/ multithreaded apps here to stay

Does the SWAT approach work for multicore?

mSWAT Fault Diagnosis Algorithm

Low-Cost symptom detectors:

Fatal Traps, Hangs,

High OS, Kernel Panic

mSWAT Fault Detection

Key Results

Low SDC rate of 0.2% of injected faults

Several detections from fault-free cores

Symptom

detected

Replay &

capture fault

activating trace

Deterministically

replay

captured trace

Faulty

core
Look for

divergence

Diagnosis

TA TB TC TD

A B C D

TD TA TB TC

A B C D

Divergence

Example

TA

A B C D

Faulty core is A

Compare Traces

Capturing fault activating trace

Native execution  No added support for replay

Record inputs to each thread (loads) for replay

Low hardware overhead for buffering

Diagnosis Results

>95% of detected faults successfully diagnosed

97% faults diagnosed in <10M cycles

<10ms on a 1GHz processor  invisible

<200KB logs  fit in lower level caches

Conclusions and Future Work

SWAT detection effective even for multicore systems with multithreaded apps

Novel diagnosis mechanism with minimal hardware changes

Ongoing and Future Work

Prototyping SWAT on FPGA in collaboration with University of Michigan

Faults in off-core components

Core 2

Fault

Core 1

Store

Memory

Load

Symptom Detection

on a fault-free core

Key Challenge: Cross-Core Fault Propagation

Multithreaded apps share data across threads

 Fault may propagate across cores

 Is SWAT effective in detecting these faults?

 Symptom causing core is no longer faulty

Implicit assumption in prior SWAT work

Need to detect fault and diagnose faulty core

Deterministically replaying captured trace

Firmware emulated isolated deterministic replay  Zero hardware overhead

Compare retiring mem/ctrl instructions for divergence  Fewer comparisons

Iterative Diagnosis to reduce overheads

E.g., capture replay every 100k instructions till divergence

Non-deterministic s/w /

Transient h/w bug

mSWAT: Diagnosis Challenges and Approaches

Previous SWAT diagnosis

Distinguish HW/SW faults

No symptom Symptom

Deterministic s/w /

permanent h/w bug

Symptom detected

No symptomSymptom

Faulty Good

Rollback/replay

on faulty core

Rollback/replay

on good core

Permanent

h/w defect

Continue

Execution

Deterministic

s/w bug

Challenge in multicore: No known good core

mSWAT: Diagnosis without known good core

Isolating the faulty core

Challenges

Multithreaded

applications

Full-system

deterministic

replay

No known

good core

Isolated

deterministic

replay
Emulated TMRKey Ideas

TA TB TC TD

TA

A B C D A B C D

TA TB TC TD

TA TB TCTD

TA TBTC TD

Moore’s Law  More Transistors with smaller feature sizes  More in-field failures

 Need in-the-field detection, diagnosis, recovery, repair

Divergence

0%

20%

40%

60%

80%

100%

Decoder INT ALU Reg
Dbus

Int reg ROB RAT AGEN AverageP
e
rc

e
n

ta
g

e
 o

f
D

e
te

c
te

d
 F

a
u

lt
s

CorrectlyDiagnosed Undiagnosed

99 99 99 86 100 80 99 95.9

Published at 42nd International Symposium on Microarchitecture (MICRO), December 2009

