

mSWAT: Low-Cost Hardware Fault Detection and Diagnosis for Multicore

Siva Kumar Sastry Hari, Manlap Li, Pradeep Ramachandran, Byn Choi and Sarita Adve

University of Illinois, Urbana-Champaign

Published at 42nd International Symposium on Microarchitecture (MICRO), December 2009

Motivation

Moore's Law ⇒ **More Transistors with smaller feature sizes** ⇒ **More in-field failures**

⇒ Need in-the-field detection, diagnosis, recovery, repair

SoftWare Anomaly Treatment (SWAT): comprehensive reliability frame-work

Effective for HW faults in single-threaded apps

But multicore systems w/ multithreaded apps here to stay

Does the SWAT approach work for multicore?

Key Challenge: Cross-Core Fault Propagation

Multithreaded apps share data across threads

- ⇒ Fault may propagate across cores
- ⇒ Is SWAT effective in detecting these faults?
- ⇒ Symptom causing core is no longer faulty
 Implicit assumption in prior SWAT work

Need to detect fault and diagnose faulty core

mSWAT Fault Detection

Low-Cost symptom detectors:

Fatal Traps, Hangs, High OS, Kernel Panic

Key Results

Low SDC rate of 0.2% of injected faults
Several detections from fault-free cores

mSWAT: Diagnosis Challenges and Approaches

mSWAT Fault Diagnosis Algorithm

Capturing fault activating trace

Native execution ⇒ No added support for replay

Record inputs to each thread (loads) for replay

Low hardware overhead for buffering

Deterministically replaying captured trace

Firmware emulated isolated deterministic replay ⇒ Zero hardware overhead Compare retiring mem/ctrl instructions for divergence ⇒ Fewer comparisons

Iterative Diagnosis to reduce overheads

E.g., capture replay every 100k instructions till divergence

Conclusions and Future Work

SWAT detection effective even for multicore systems with multithreaded apps Novel diagnosis mechanism with minimal hardware changes

Ongoing and Future Work

Prototyping SWAT on FPGA in collaboration with University of Michigan Faults in off-core components