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Motivation

SoftWare Anomaly Treatment (SWAT): comprehensive reliability frame-work

Effective for HW faults in single-threaded apps

But multicore systems w/ multithreaded apps here to stay

Does the SWAT approach work for multicore?

mSWAT Fault Diagnosis Algorithm

Low-Cost symptom detectors:

Fatal Traps, Hangs, 

High OS, Kernel Panic

mSWAT Fault Detection

Key Results

Low SDC rate of 0.2% of injected faults

Several detections from fault-free cores
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Native execution  No added support for replay

Record inputs to each thread (loads) for replay

Low hardware overhead for buffering

Diagnosis Results

>95% of detected faults successfully diagnosed

97% faults diagnosed in <10M cycles

<10ms on a 1GHz processor  invisible

<200KB logs  fit in lower level caches

Conclusions and Future Work

SWAT detection effective even for multicore systems with multithreaded apps

Novel diagnosis mechanism with minimal hardware changes

Ongoing and Future Work

Prototyping SWAT on FPGA in collaboration with University of Michigan
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Key Challenge: Cross-Core Fault Propagation

Multithreaded apps share data across threads

 Fault may propagate across cores

 Is SWAT effective in detecting these faults?

 Symptom causing core is no longer faulty

Implicit assumption in prior SWAT work

Need to detect fault and diagnose faulty core

Deterministically replaying captured trace

Firmware emulated isolated deterministic replay  Zero hardware overhead

Compare retiring mem/ctrl instructions for divergence  Fewer comparisons

Iterative Diagnosis to reduce overheads

E.g., capture replay every 100k instructions till divergence
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mSWAT: Diagnosis Challenges and Approaches
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Challenge in multicore: No known good core

mSWAT: Diagnosis without known good core

Isolating the faulty core
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Moore’s Law  More Transistors with smaller feature sizes  More in-field failures

 Need in-the-field detection, diagnosis, recovery, repair
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