
GSRC Annual

Symposium

Oct 17, 2012

PUB ID 2926

Motivation

• Resiliency solution should handle Silent Data Corruptions

• Can we find all SDC-prone application locations?

• How to cost-effectively convert SDCs to detections?

• How to tune resiliency vs. performance?

Conclusions

Look Ma, No SDCs!

Siva Hari†, Radha Venkatagiri†, Sarita Adve†, and Helia Naeimi ‡

†University of Illinois at Urbana-Champaign, ‡Intel Corporation

Relyzer finds a comprehensive list of SDC-producing application fault-sites

New program-level detectors cost effectively convert SDCs to detections

Relyzer + new detectors + selective duplication = Tunable resiliency at low cost

Resilient System Task # 5.5.3

Traditional
Statistical Fault

Injections
Ideal Approach

Injections in few

app-sites

Injections in all

app sites

Cannot find all

SDC sites
Find all SDC sites

Analyze all app fault-sites

with few injections

APPLICATION
.

.

Output

Relyzer APPLICATION
.

.

Output

Traditional approach: Instruction duplication

Challenges: Our approach:

Where to

place?

Many errors propagate to few program values

• End of loops and function calls

What to

use?

Program level properties tests

• E.g., value equality, bounds

Uncovered

fault-sites?
Selective duplication on few locations

Low cost Program-level Detectors

Example: Loop incrementalization based detector

L: access A, B
 . . .

 add A = A + 0x8

 add B = B + 0x8

 add i = i + 1

 branch (i<n) L

Detectors:
Property checks on A, B, & i

Example: Diff in A = Diff in B

SDC-hot

app-sites

Collect initial values of A, B, & i

Application

Execution

Silent Data

Corruption

(SDC)

Soft-
error

Finding SDC-Vulnerable App Sites [ASPLOS 2012] Converting SDCs to Detections [DSN 2012]

Relyzer can identify all SDC producing application locations

APPLICATION
.

.

Output Error
Detectors

APPLICATION
.

Error
Detection

Fault model: Transient bit-flips in register operands of

 every executing instruction

Relyzer prunes app fault-sites that need detailed injections

Application level fault equivalence

E.g., Precise Def-Use Analysis

• Faults in definition are equivalent to faults in first use

E.g., Heuristics-based Control Analysis

• Idea: Faults flowing through same instrns. behave similarly

Results: 2 to 6 orders of magnitude pruning at 96% accuracy

Relyzer: Exploiting App-level Fault Equivalence Tuning Resiliency vs. Performance

Need to find lowest-cost detectors for a target SDC reduction

 For the first time, made possible by Relyzer

Our approach:

1. Set attributes of detectors

2. Formulate optimization problem

 Constraint: SDC red. ≥ Target

 Objective: Minimize overhead

3. Solution provides near optimal detectors

Bag of detectors
Selected

Detectors

SDC Covg.= X%

Overhead = Y%

Detector

E.g., 9% overhead for

60% SDC reduction

Developing fast fault simulation framework to speedup Relyzer even further

Modularized resiliency analysis to automatically find and protect SDC-vulnerable app sections

Program-level metrics to identify SDC producing app-sites without any injections

Ongoing Work

CFG

0%

20%

40%

60%

80%

100%

Aggregate Pruning

96%

0%

20%

40%

60%

80%

100%

Average Accuracy

99.78%

Results: 84% SDCs detected at 10% cost

84%

0%

20%

40%

60%

80%

100%

Average SDC
Reduction

10%
0%

20%

40%

60%

80%

100%

Average Execution
Overhead

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

E
xe

cu
ti

o
n

 O
ve

rh
ea

d

Average SDC Reduction

Relyzer + new detectors

+ selective duplication

Relyzer + selective

duplication

18%

90%

24%

99%

Our approach:

Low cost error detectors

+
Selective duplication

Tunable resiliency at low cost

