/

QSRC F@ﬂp '

Look Ma, No SDCs!

Siva HariT, Radha Venkatagiri?, Sarita AdveT, and Helia Naeimi*

TUniversity of lllinois at Urbana-Champaign, ¥Intel Corporation
Resilient System Task # 5.5.3

Motivation

* Resiliency solution should handle Silent Data Corruptions

Soft-
error

Application Silent D_ata
Execution orren, e, o0 o CoOrruption
(SDC)

 Can we find all SDC-prone application locations?
 How to cost-effectively convert SDCs to detections?
 How to tune resiliency vs. performance?

Relyzer: Exploiting App-level Fault Equivalence

Fault model: Transient bit-flips in register operands of
every executing instruction

Relyzer prunes app fault-sites that need detailed injections

Application level fault equivalence

E.g., Precise Def-Use Analysis

* Faults in definition are equivalent to faults in first use
E.g., Heuristics-based Control Analysis

Finding SDC-Vulnerable App Sites [ASPLOS 2012]

Traditional
Statistical Fault | Ideal Approach
Injections |

Injections in few Injections in all

app-sites

app sites

Cannot find all
SDC sites

Find all SDC sites

Analyze all app fault-sites

with few injections
R -e—
90909 D090
90909
9909
APELIGSBON m APPLICATION
o090 ® .
- e = - —
\ 4 7 \ 4 /
[Output ~ Output

Relyzer can identify all SDC producing application locations

Low cost Program-level Detectors
Challenges: |Our approach:

Where to
place?

Many errors propagate to few program values
 End of loops and function calls

What to
use?

Program level properties tests
 E.g., value equality, bounds

Uncovered
fault-sites?

Selective duplication on few locations

- Idea: Faults flowing through same instrns. behave similarly Example: Loop incrementalization based detector

Start

Results: 2 to 6 orders of magnitude pruning at 96% accuracy

100% - 100% -
80% - 80% -
60% - 60% -
40% - 40% -
20% - 20% -
0% 0%
Aggregate Pruning Average Accuracy

Conclusions

SDC-hot [+
app-sites |-

»L: access A, B A

<

add A=A+ 0x8

~.add B=B+0x38
add “i=i+1

branch (i<n) L1)

Collect initial values of A, B, & i

Detectors:
Property checks on A, B, & i

Example: Diff in A = Diff in B

Results: 84% SDCs detected at 10% cost

100%
80%
60%
40%
20%

0%

Average SDC
Reduction

Relyzer finds a comprehensive list of SDC-producing application fault-sites
New program-level detectors cost effectively convert SDCs to detections
Relyzer + new detectors + selective duplication = Tunable resiliency at low cost

0%
80% ~+
60% ~
0%
20%%
o, | EE
Average Execution
Overhead

GSRC Annual
Symposium

, gy Oct 17, 2012
< =¥ N ' & - =
.’“ e WIS, PUB ID 2926

Converting SDCs to Detections [DSN 2012]

Traditional approach: Instruction duplication

e h: h e
——
Low cost error detectors . » &
APPLICATION LAPRKICATION
~+ s \ E Y/
. L : ey
Selective duplication Detection

Tunable resiliency at low cost ﬁ

Tuning Resiliency vs. Performance

Need to find lowest-cost detectors for a target SDC reduction

For th

Our approach:

1. Set attributes of detectors

2. Formulate optimization problem
Constraint: SDC red. 2 Target
Objective: Minimize overhead

3. Soluti

E.g., 9% overhead for
60% SDC reduction

50%
o 45%
2 40%
S 35%
© 30%
2 25%
3 20%
@ 15%
10%
5%
0%

e first time, made possible by Relyzer

on provides near optimal detectors

Selcggt,ed/O/;;jj/—~—*” Bag of detectors
Detectors W~

@

I Relyzer + selective Relyzer + new detectors |

I duplication + selective duplication

. 24%

R T i 90% 99%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Average SDC Reduction

Ongoing Work

Developing fast fault simulation framework to speedup Relyzer even further
Modularized resiliency analysis to automatically find and protect SDC-vulnerable app sections
Program-level metrics to identify SDC producing app-sites without any injections

