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Motivation

* Resiliency solution should handle Silent Data Corruptions

Soft-
error

Application Silent D_ata
Execution orren, e, o0 o CoOrruption
(SDC)

 Can we find all SDC-prone application locations?
 How to cost-effectively convert SDCs to detections?
 How to tune resiliency vs. performance?

Relyzer: Exploiting App-level Fault Equivalence

Fault model: Transient bit-flips in register operands of
every executing instruction

Relyzer prunes app fault-sites that need detailed injections

Application level fault equivalence

E.g., Precise Def-Use Analysis

* Faults in definition are equivalent to faults in first use
E.g., Heuristics-based Control Analysis

Finding SDC-Vulnerable App Sites [ASPLOS 2012]
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Relyzer can identify all SDC producing application locations

Low cost Program-level Detectors
Challenges: |Our approach:

Where to
place?

Many errors propagate to few program values
 End of loops and function calls

What to
use?

Program level properties tests
 E.g., value equality, bounds

Uncovered
fault-sites?

Selective duplication on few locations

- Idea: Faults flowing through same instrns. behave similarly Example: Loop incrementalization based detector

Start

Results: 2 to 6 orders of magnitude pruning at 96% accuracy
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Conclusions
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add A=A+ 0x8

~.add B=B+0x38
add “i=i+1

branch (i<n) L1 )

Collect initial values of A, B, & i

Detectors:
Property checks on A, B, & i

Example: Diff in A = Diff in B

Results: 84% SDCs detected at 10% cost
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Relyzer finds a comprehensive list of SDC-producing application fault-sites
New program-level detectors cost effectively convert SDCs to detections
Relyzer + new detectors + selective duplication = Tunable resiliency at low cost
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Converting SDCs to Detections [DSN 2012]

Traditional approach: Instruction duplication
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Tunable resiliency at low cost ﬁ

Tuning Resiliency vs. Performance

Need to find lowest-cost detectors for a target SDC reduction

For th

Our approach:

1. Set attributes of detectors

2. Formulate optimization problem
Constraint: SDC red. 2 Target
Objective: Minimize overhead

3. Soluti

E.g., 9% overhead for
60% SDC reduction
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Ongoing Work

Developing fast fault simulation framework to speedup Relyzer even further
Modularized resiliency analysis to automatically find and protect SDC-vulnerable app sections
Program-level metrics to identify SDC producing app-sites without any injections




