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Abstract—Current technology scaling is leading to increasingly
fragile components making hardware reliability a primary d esign
consideration. Recently researchers have proposed low-cost reli-
ability solutions that detect hardware faults through monitoring
software-level symptoms. SWAT (SoftWare Anomaly Treatment),
one such solution, demonstrated through microarchitecture level
simulations that it can provide high fault coverage and a Silent
Data Corruption (SDC) rate of under 0.5% for both permanent
and transient hardware faults for all but one hardware compo-
nent studied. More accurate evaluations of SWAT require tests
on industry strength processor, a commercial operating system,
unmodified applications, and accurate low-level fault models.

In this paper, we propose a FPGA based evaluation platform
that provides the software, hardware, and fault model accuracy
to verify symptom-based fault detection schemes. Our platform
targets a OpenSPARC T1 processor design running a commercial
operating system, OpenSolaris, and leverages CrashTest, an
accurate gate-level fault analysis framework, to model gate-level
permanent faults. Furthermore, we modified the OpenSPARC
core to support hardware checkpoint and restore to make a large
volume of experiments feasible.

With this platform we provide results for 30,620 fault injection
experiments across the major components of the OpenSPARC
T1 design and running five SPECInt 2000 benchmarks. With a
conservative, overall SDC rate of 0.94%, the results are similar
to previous microarchitectural level evaluations of SWAT and
are encouraging for the effectiveness of symptom-based software
detectors.

I. I NTRODUCTION

Shrinking feature sizes threaten higher runtime failure rates
in future commodity systems, motivating low-cost resiliency
solutions [1]. Conventional solutions use heavyweight redun-
dancy with high performance, area, and energy overheads,
making them prohibitive for many processor designs.

Recent work has explored lighter-weight solutions based
on the insight that not all hardware faults are problem-
atic [2, 3, 4, 5, 6, 7, 8]. These approaches are based on
the observation that, for most applications, only the faults
that visibly affect software behavior should be treated. Faults
that are masked at the circuit, microarchitectural, architectural,
operating system, or application levels do not require any
corrective action, and therefore, there is no advantage in
detecting them. This approach detects hardware faults by
monitoring for anomalous software behavior using very low
cost monitors. In the infrequent case of a fault detection, the
software symptom detection triggers a more sophisticated di-
agnosis and checkpoint-based recovery. The SWAT (SoftWare

Anomaly Treatment) [3, 9, 10] system represents the state-
of-the-art in such an approach. Evaluations of SWAT through
software simulation at the microarchitectural level demonstrate
the effectiveness of this approach. Such results - collected
through randomized injection of permanent and transient faults
in a core running various workloads - revealed a silent data
corruption (SDC) rate lower than 0.5

Unfortunately, acceptably accurate evaluation of resiliency
solutions that rely on hardware and software mechanisms
(such as SWAT) remains challenging. Such evaluations require
executing the complete software stack, consisting of long
executions of applications on top of an operating system.
Fault manifestations at the software level may span millions of
cycles and assessing software masking or data corruptions may
require running the application until completion. Furthermore,
accurate modeling of hardware errors requires very detailed
fault models and low-level knowledge of the design under eval-
uation. Unfortunately, software solutions capable of simulating
complete computer systems in such detail are extremely slow
(up to tens of cycles per second) [11] and thus are impractical
to study fault effects on execution windows of millions or even
billions of cycles. Most previous evaluations therefore adopted
microarchitecture-level software simulations [8, 3]. Such sim-
ulations achieve viable performance for fault injections by
heavily simplifying the hardware fault model. Modeling hard-
ware faults at such high level causes reliability analysis to
neglect important system characteristics such as control signals
and circuit-level masking effects. The SWATSim approach [3]
proposed a compromise between speed and accuracy by us-
ing a mixed gate-level/microarchitectural software simulation.
Unfortunately, its use is constrained by the requirement to
simulate and interface both microarchitectural and gate-level
models of each component. (The SWATSim work interfaced
only three components in this way.)

An alternative to software-based fault simulations is to
employ reconfigurable hardware such as Field-Programmable
Gate Arrays (FPGA) to accelerate fault injections. Previous
works restricted their fault models to transient faults or were
applicable only to very simple circuits [12, 13, 14]. In contrast,
CrashTest is a resiliency analysis framework that addresses
both fault model accuracy and fault simulation performance
by providing an automated way to inject a variety of fault
models, including permanent and transient faults, on complex



systems [11]. Through the use of FPGAs, CrashTest has
been successfully used to evaluate the reliability of industrial-
size designs without compromising the accuracy of the fault
models.

In this paper, we use CrashTest to evaluate the effective-
ness of SWAT to detect the permanent faults inserted in an
industrial-strength processor core, the OpenSPARC T1 [15].
We modified the processor core and system’s firmware to
support a subset of SWAT detectors, and implemented a
full-system checkpoint mechanism. We then injected 30,620
stuck-at faults across all hardware structures of the processor
core. Each fault was activated at runtime, while the design
was executing applications selected from the SPECInt 2000
benchmark suite within the environment provided by OpenSo-
laris, a commercial operating system. For each fault injection,
we determine if its effects on the software benchmark were
masked, caused a silent output corruptions (SDC), or whether
the SWAT detectors were able to detect the hardware failure.

Overall, our FPGA-based experiments validate the results
previously reported by software-based simulations of SWAT,
but also reveal some interesting differences. First, the masking
rate we report in this work is higher than the one reported
in previous evaluations of SWAT performed on less accurate
hardware and fault models. Second, the experiments that
resulted in silent data corruptions were concentrated within a
handful of hardware components – mostly complex functional
units such as the floating point unit, the multiplier, and the
divider. Finally, the range of software anomalies detectedis
much wider than previously recognized.

To the best of our knowledge, this work is the first to evalu-
ate and validate the effectiveness of lightweight fault detection
techniques for permanent faults on a commercial processor
executing real applications on a commercial operating system
through gate-level fault injections in all components of a
processor core.

II. EXPERIMENTAL METHODOLOGY

A. FPGA Platform

Our FPGA framework is inspired by the OpenSPARC
Project at Sun Microsystems [15], where a OpenSPARC T1
processor was mapped on to a Xilinx Virtex-5 FPGA. In this
setup, a single processor core from the OpenSPARC T1 design
and its L1 caches are implemented on the FPGA, while the
L2 cache, memory controller and other basic peripherals are
emulated through the support of an ancillary microprocessor
mapped on the FPGA device (a Xilinx MicroBlaze).

The OpenSPARC core was instrumented with logic to
emulate fault models in various locations through CrashTest
(Section II-B). The MicroBlaze processor already present in
the design was adopted to activate each fault location at
runtime. Support for the SWAT detectors was also added
in hardware(Section II-C). Significant modifications to the
original design were also needed to modify the memory
controller to increase the size of the off-chip DRAM. The
extra memory space was used to store the benchmarks used
in our experiments and the checkpointed memory. Finally,

an additional communication channel between the host and
the on-board MicroBlaze was established to allow runtime
enabling and disabling of the fault locations. Figure 1 shows
a high-level representation of our experimental setup. In the
figure, the major design modifications are highlighted with a
darker tone.

Transferring all the necessary data (FPGA configuration
and memory images) from a host to the target FPGA board
used in our experiments takes approximately 20 minutes. This
design can successfully execute an unmodified version of
the Sun OpenSolaris operating system, but an additional 50
minutes are necessary for the emulated machine to boot to an
interactive console. To avoid spending such a large amount
of time to setup the system for a single fault injection and
to enable a large volume of experiments, we implemented
a checkpoint and restore mechanism. With the checkpoint
system, the time required for a single board setup can be
shared among several fault injections (Section II-E). The
checkpoint operation copies the processor architectural state
(e.g. register files, PCs, trap stack) to shadow registers within
the OpenSPARC processor design and also conservatively
copies the entire processor memory space and file system into
a shadow memory area. Processor checkpoint data is stored
within the OpenSPARC design, and the memory checkpoint
is handled by the MicroBlaze firmware. Thus, a sophisticated
synchronization mechanism is necessary to coordinate these
two checkpoints to take a coherent snapshot of system’s
status. A restore mechanism, which roll backs the state of the
system to a certain checkpoint state stored in the system, has
also been developed. In order to avoid issues with in-flight
memory requests, we delay checkpoint operations until all
load/store queues have been emptied and no active instructions
are in the pipeline. Additionally, we invalidate the L1 caches
and the TLBs during both checkpoint and restore, and the
entire processor is reset before performing a restore to clear
any leftover non-architectural state from the previous fault
injection experiment.

B. CrashTest

CrashTest is able to automatically instrument a digital
design with logic that mimics hardware faults at the gate
level [11]. It takes as input the RTL of the design under
evaluation and automatically injects faults leveraging accurate
fault models. To maintain high evaluation speed without com-
promising fault accuracy, the fault-enabled design is mapped
to a hardware emulation platform (FPGA). In generating a
FPGA-ready fault-enabled system, CrashTest performs four
transformations: 1) the original design is synthesized through
Synopsys Design Compiler to produce a gate-level netlist; 2)
the produced netlist, comprising only basic gates, is analyzed
by CrashTest to identify possible fault locations; 3) logicthat
mimics fault behavior at the gate-level is inserted in selected
locations of the netlist; 4) the complete system is finally
mapped to the targeted FPGA device.

Multiple faults are injected into each synthesized design
as this last step typically requires a considerable amount of
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Fig. 1. Experimental setup and design modifications

time particularly due to the synthesis and place-and-route
algorithms. Fault locations, when deactivated, do not alter
the behavior of the design. Each fault location can also be
individually activated to produce the effects of the fault.This
approach allows CrashTest to amortize design setup time
among several experiments.

CrashTest can accelerate resiliency analysis of industrial-
size designs by up to six orders of magnitude compared
to equivalent software-based fault injections [11]. Moreover,
CrashTest does not alter the original design functionality,
allowing it to execute a complete software stack, including
the operating system and user applications. This characteristic
is fundamental in testing the effectiveness of hybrid hard-
ware/software fault tolerant solutions like SWAT.

For this work, due to area limitations in the FPGA de-
vice in our experimental setup, we could not inject faults
throughout the entire OpenSPARC core at once. We therefore
partitioned the design into multiple microarchitectural modules
and injected faults in each of them (Section II-E). The timing
achievable for the fault-enabled OpenSPARC core on our
FPGA device is 100ns, enough to run the design at a frequency
of 10MHz. Even though this frequency is four times slower
than the one reached by the original design, it still yields a
speed-up of six orders of magnitude compared to a software-
based fault simulation with equivalent accuracy.

C. SWAT Detectors

We considered the following detectors based on the SWAT
philosophy, customized for the OpenSPARC platform. In a
real system, the detected symptoms would trigger a trap to the
firmware which would invoke the diagnosis [10] and recovery
mechanisms [16, 17].
Fatal Traps and Kernel Panics:Previous SWAT work reports
that these detectors are commonly invoked in the presence of
faults. Fatal traps include traps due to events such as divide-
by-zero, misaligned accesses, and maximum trap level [3]. The
kernel panic detector is triggered when the OS enters its panic
routine. We could not recompile the version of the OpenSolaris
kernel provided with the FPGA platform to implement these
detectors in software. Instead, we monitored the traps and
kernel panic program counters in the hardware to trigger these
detections.
Hypervisor Crashes: We use error messages printed by the
hypervisor as a detection (again, we could not modify the
source to catch the symptom before the message is printed). In

our experiments, an example failure is a TLB miss exception
that occurs at an invalid trap level.
Firmware Checks: The OpenSPARC firmware runs on the
MicroBlaze to emulate the L2, packet receiving logic, and the
memory controller. It performs a variety of consistency checks
as part of its communication with the OpenSPARC core (many
of them would be performed in hardware in a real machine).
We report failed checks as fault detections since they would
originally cause the firmware to abort execution. Examples
include out-of-bounds addresses for loads and stores, and
invalid request types from the core.
Hardware Stalls: We detect a fault if a hardware thread has
not issued instructions for a period longer than a predefined
threshold (set to 300 million cycles, or about 30sec, to avoid
false positives).
Abnormal Exits: These symptoms were detected via console
output monitoring and include the following: segmentation
fault, core dump, dynamic linker errors, errors from Open-
Solaris services, abnormal program termination, and program
assertion failures. In all of these cases, a real system would
trap to the firmware diagnosis/recovery at the point of failure
detection and before sending the error message output.
SWAT detectors not included:The main SWAT detectors not
included here are a hang detector and a high OS detector [3]
and will be the focus of future work.

D. Workloads

We evaluated the effects of stuck-at faults in five applica-
tions extracted from the SPECInt 2000 benchmark suite with a
combination of the test and reduced input sets [18] (Table I).
We selected smaller input sets due to the large runtime (>

1 hour) on the FPGA platform of the reference input sets.
Since our experiments consisted in testing the effects of more
that 30,000 faults, running the reference input set for such
benchmarks was not a practical option. All benchmarks were
compiled for the SPARC-V9 architecture with default (−O3)
optimizations.

E. Fault Injections and Outcomes

For this paper, we only focused on injecting stuck-at faults
in various nets in the design (we studied both stuck-at-1 or
stuck-at-0 faults). As previously explained, we partitioned the
core into multiple modules and injected faults in random
locations in these modules. Table II lists the units into which



TABLE I
WORKLOADS

Benchmarks Input Set Number of FPGA Time
Instructions

175.vpr (place) medium reduced 458M 9m 9s
181.mcf test 419M 5m 27s

197.parser medium reduced 913M 6m 16s
255.vortex medium reduced 547M 11m 55s
300.twolf test 415M 5m 15s

TABLE II
MODULES OF THEOPENSPARCINJECTED WITH FAULTS

OpenSPARC T1 Gate Fault
unit count locations

Arithmetic Logic Unit (ALU) 1,968 19
Divide (DIV) 3,277 31

Error Correction and Control (ECC) 998 10
Execution Control Logic (ECL) 1,727 17

Multiplier (MUL) 14,665 138
Register Management Logic (RML) 1,206 11

Register Bypass Logic (BYP) 5,938 56
Floating Point Frontend Unit (FFU) 5,776 55

Instruction Fetch Unit (IFU) 13,980 225
Load Store Unit (LSU) 24,127 635
Trap Logic Unit (TLU) 18,693 334

faults were injected, the total number of gates in each unit,
and the number of different fault locations that were used
within each unit. The targeted number of faults injected in
each module is a function of its area (approximated by the
number of gates in the module’s gate-level netlist) and was
computed for a confidence level of 95% and a confidence
interval of 4% (Table II). For three hardware units, the IFU,
LSU and TLU, the ratio between the number of faults and
number of gates is higher than for the other modules. This
is due to the fact that these threes units, once instrumented
with the checkpoint mechanism and faults, could not meet
timing requirements on the FPGA hardware. Thus, we had
to partition these three units into smaller sub-modules that
were instrumented separately. For each of these three modules,
the total gate count for the submodules is higher than for the
original unit since the synthesizer has a narrower optimization
scope. Note, however, that the increased ratio only increases
the confidence of our results for the experiments performed
on the IFU, LSU and TLU. No faults were injected in the
memory array structures of the design (such as register file,
caches, and TLBs) since these structures are protected with
ECC or parity.

Experiments were run for each fault location in two different
phases of the five selected benchmarks. The first fault injection
point is roughly after the initialization portion of the bench-
mark, and the second point is roughly halfway between the
first injection point and benchmark completion. For each of the
two fault activation points, a checkpoint is taken before starting
a fault injection campaign. We then wait for approximately 50
million cycles (5 seconds) to allow caches and TLBs to warm
up, and then activate a single fault location. We then monitor
the system to determine if any of the following termination
conditions are met:
Detection: The fault is detected with one of the SWAT

detectors previously described.
Masked: The application finishes without a detection and its
output matches the golden application output.
Silent Data Corruption (SDC): The application finishes
without a detection, but its output files differ from the golden
output. Our definition of SDC is conservative – many of the
outcomes differ in ways that are not important to the user (i.e.,
the fault is really masked) while others clearly show erroneous
behavior (i.e., the fault is detectable by the user but may not
be recoverable). Further analysis is needed to separate such
instances and will be the focus of future work.
Timeout: To limit the experiment time, we declare a timeout
if an injection experiment takes more than 150% of the time
taken to run on the FPGA without faults injected. We expect
many of these cases to be detected by a hang detector.
Other: This category includes cases where the application did
not terminate in a normal way due to some idiosyncrasies
of our current system (e.g., the file system was too small
and filled up, a detector was triggered after the fault was
deactivated, the application output printing hung in a way that
was hard to explain). Further study is necessary to further
understand such erroneous behaviors.

After the outcome of the experiment is known, the processor
and memory state are restored to our checkpointed state and
we continue with the next fault experiment.

III. RESULTS

Our experimental setup has allowed us to study 30,620
faults, across all modules of the OpenSPARC T1 processor
core design. Figure 2 shows the outcome of these experiments
for each module, where the total fault injections for the module
are normalized to 100%. Overall we observe that 59.9% of the
faults are masked, 29.1% are detected, and only 0.94% result
in SDCs (conservatively). The remaining 10.1% are in the
timeout or other categories. We analyze our results in detail
below:
Masking: We observe a high masking rate of 59.9% on aver-
age for permanent faults across all the modules. This is higher
than the masking rate observed in previous microarchitecture-
level permanent fault injection results [3] (16%) or the gate-
level results for the three modules simulated with SWATSim
(30% to 40%). We believe that the masking rate is high
because: (1) The OpenSPARC core was originally designed
for 4 hardware threads. However, our experiments used the
one threaded version of the core. Although only one thread is
functional, the pruning in the design was not complete, leaving
unutilized hardware components needed for multithreaded
execution. Such hardware, when injected with faults, can raise
the masking rate. (2) Some modules such as MUL, FFU,
and TLU contain paths that are not significantly exercised by
our applications. For example, our applications do not contain
streaming or floating point instructions that use all MUL and
FFU features. The masking rate for the TLU may also have
been impacted by the little exception handling required forour
SPEC applications. Also, roughly 1/6th of TLU fault injections
were in the performance counter logic and were all masked. (3)



Fig. 2. Breakdown of fault injections by unit. The x-axis shows the unit
under study, and the y-axis shows the percentage of experiments that fell into
each category.

There is natural circuit and application level masking where
the faulty path is exercised but the faulty value does not affect
the application output; e.g., our detailed results (not shown
here) show that there is more masking for stuck-at-0 than
stuck-at-1 faults.
Detections:The overall detection rate is 29.07%. In Table III
we show the overall detection rate for each of our detectors.

Of the Hardware Stalls, roughly 79% are due to fault
injections in the LSU control logic. We also found that
Hardware Stalls and Firmware Checks are the only detectors
invoked for FFU faults. Overall, the OpenSPARC platform
sees a larger variety of detectors invoked relative to previous
SWAT simulations.
Timeouts: A significant fraction of the fault injection experi-
ments (7.8%) run much longer than the fault-free execution.In
previous work, SWAT developed heuristics to detect software
hangs and currently we are investigating whether such detec-
tors can be used to convert the faults in the timeout category
into detections.
Others: This category only affects 2.4% of our experiments.
It may be the case that a majority of these are caused due to
the experimental methodology or latent faults in the OS. We
need to further investigate these cases.
SDCs: Our experiments so far have yielded an overall SDC
rate of 0.94%. Interestingly, we found that ALU, ECC, ECL,
RML, and IFU produced no SDCs. We also noticed that BYP,
LSU, and TLU have an SDC rate of< 1%. Only DIV, MUL,
and FFU have an SDC rate of over 1%, with FFU having the
highest at 10.2%. Thus, the vast majority of the SDCs are
concentrated in a few units, which should be the focus of any
additional resiliency techniques.

Furthermore, after closer examination of these SDCs, we
found 16.6% of them had error messages within their outputs.
For example, some cases occurred due to benchmark error
consistency checking. Since these produce error messages,it

should be possible for a user or Application-level detection
mechanism to detect the data corruption.

TABLE III
DETECTIONBREAKDOWN

Kernel Fatal Firmware Hypervisor Abnormal Hardware
Panics Traps Checks Crashes Exits Stalls
31.5% 25.7% 10.8% 9.9% 5.8% 16.2%

IV. CONCLUSIONS ANDFUTURE WORK

This paper tested the effectiveness of low-cost fault detec-
tors as in SWAT on an industrial-strength microprocessor core
with an extensive number of gate-level permanent fault injec-
tions Our gate-level injections are across the entire processor
– previous studies of permanent faults were limited either to
microarchitecturally visible structures or could exploreonly
a few modules. Our fault injections were accomplished with
the support of the CrashTest resiliency framework, a tool that
can automatically insert faults in the gate-level model of the
design under test. Our results validate the previous promise
of lightweight detection techniques, but also exposed some
interesting phenomena, including the concentration of SDCs
in a few modules and variety in the detectors invoked in a real
system.

We injected a total of 30,620 stuck-at faults throughout
the major hardware modules of the OpenSPARC core. The
current set of SWAT detectors were able to detect 72.4% of
unmasked faults, and many of the remaining undetected cases
may be application or OS hangs. Overall, only 0.94% of the
experiments led to silent data corruptions.

We would like to extend this work in several directions.
First, we would like to evaluate more fault models with
our higher coverage of the OpenSPARC hardware. Second,
we would like to implement SWAT hang detectors to better
evaluate and understand our timeout cases. Third, we want to
further evaluate the effectiveness of the SWAT detectors and
measure their latency in detecting hardware faults. Finally, we
would like to extend this work to a dual core system to evaluate
a full detection, diagnosis, and recovery scheme for SWAT.
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