CrashTest'ing SWAT: Accurate, Gate-Level
Evaluation of Symptom-Based Resiliency Solutions

A. Pellegrint, R. Smolinski, L. Chert, X. Fl?, S. K. S. Har, J. Jiang, S. V. Advé, T. Austint, and V. Bertaccb

Department of Electrical Engineering and Computer Scighkgversity of Michigan, Ann Arbor
2Department of Computer Science, University of lllinois ablna Champaign, swat@illinois.edu

Abstract—Current technology scaling is leading to increasingly Anomaly Treatment) [3, 9, 10] system represents the state-
fragile components making hardware reliability a primary design of-the-art in such an approach. Evaluations of SWAT through
consideration. Recently researchers have proposed low&breli- gy are simulation at the microarchitectural level destoate
ability solutions that detect hardware faults through monitoring . .
software-level symptoms. SWAT (SoftWare Anomaly Treatmet), the effectwenes§ of_th|s _approach. Such results -.cotﬂecte
one such solution, demonstrated through microarchitectue level through randomized injection of permanent and transiaritfa
simulations that it can provide high fault coverage and a Siént in a core running various workloads - revealed a silent data
Data Corruption (SDC) rate of under 0.5% for both permanent corruption (SDC) rate lower than 0.5
and transient hardware faults for all _but one hardware compo- Unfortunately, acceptably accurate evaluation of resije
nent studied. More accurate evaluations of SWAT require tes . .
on industry strength processor, a commercial operating syem, solutions that rely on hardware. and software mechanlsms
unmodified applications, and accurate low-level fault modks. (such as SWAT) remains challenging. Such evaluations requi

In this paper, we propose a FPGA based evaluation platform executing the complete software stack, consisting of long
that provides the software, hardware, and fault model accuacy executions of applications on top of an operating system.
to verify symptom-based fault detection schemes. Our platim 5,1t manifestations at the software level may span milioh

targets a OpenSPARC T1 processor design running a commerdia . . .
operating system, OpenSolaris, and leverages CrashTestna cycles and assessing software masking or data corruptiags m

accurate gate-level fault analysis framework, to model gatlevel require running the application until completion. Furtinere,
permanent faults. Furthermore, we modified the OpenSPARC accurate modeling of hardware errors requires very detaile

core to support hardware checkpoint and restore to make alage fault models and low-level knowledge of the design undet-eva

volume of experiments feasible. ; . L
With this platform we provide results for 30,620 fault injection uation. Unfortunately, software solutions capable of sating

experiments across the major components of the OpenSPARC complete computer systems in such detail are extremely slow
T1 design and running five SPECInt 2000 benchmarks. With a (up to tens of cycles per second) [11] and thus are imprdctica
conservative, overall SDC rate of 0.94%, the results are siitar to study fault effects on execution windows of millions oeav
to previous microarchitectura] level evaluations of SWAT and pjllions of cycles. Most previous evaluations thereforetetd
gre?eirt]grc?suragmg for the effectiveness of symptom-based $0Bre ioroarchitecture-level software simulations [8, 3]. Busim-
' ulations achieve viable performance for fault injections b
|. INTRODUCTION heavily simplifying the hardware fault model. Modeling tar
Shrinking feature sizes threaten higher runtime failutesa ware faults at such high level causes reliability analysis t
in future commodity systems, motivating low-cost resitign neglect important system characteristics such as corgnohis
solutions [1]. Conventional solutions use heavyweighured and circuit-level masking effects. The SWATSim approadh [3
dancy with high performance, area, and energy overheagsyposed a compromise between speed and accuracy by us-
making them prohibitive for many processor designs. ing a mixed gate-level/microarchitectural software siatialn.
Recent work has explored lighter-weight solutions basedhfortunately, its use is constrained by the requirement to
on the insight that not all hardware faults are problensimulate and interface both microarchitectural and getell
atic [2, 3, 4, 5, 6, 7, 8]. These approaches are based models of each component. (The SWATSim work interfaced
the observation that, for most applications, only the faulbnly three components in this way.)
that visibly affect software behavior should be treatedilfSa An alternative to software-based fault simulations is to
that are masked at the circuit, microarchitectural, asghitral, employ reconfigurable hardware such as Field-Programmable
operating system, or application levels do not require aryate Arrays (FPGA) to accelerate fault injections. Presiou
corrective action, and therefore, there is no advantage works restricted their fault models to transient faults arev
detecting them. This approach detects hardware faults applicable only to very simple circuits [12, 13, 14]. In crast,
monitoring for anomalous software behavior using very loWrashTest is a resiliency analysis framework that addsesse
cost monitors. In the infrequent case of a fault detectibe, tboth fault model accuracy and fault simulation performance
software symptom detection triggers a more sophisticated 8y providing an automated way to inject a variety of fault
agnosis and checkpoint-based recovery. The SWAT (SoftWamedels, including permanent and transient faults, on cerpl

systems [11]. Through the use of FPGAs, CrashTest has additional communication channel between the host and
been successfully used to evaluate the reliability of itdhis the on-board MicroBlaze was established to allow runtime
size designs without compromising the accuracy of the fadhabling and disabling of the fault locations. Figure 1 show
models. a high-level representation of our experimental setup.him t

In this paper, we use CrashTest to evaluate the effectifigure, the major design modifications are highlighted with a
ness of SWAT to detect the permanent faults inserted in darker tone.
industrial-strength processor core, the OpenSPARC TL1. [15] Transferring all the necessary data (FPGA configuration
We modified the processor core and system’s firmware &md memory images) from a host to the target FPGA board
support a subset of SWAT detectors, and implementeduaed in our experiments takes approximately 20 minutes Thi
full-system checkpoint mechanism. We then injected 30,62@sign can successfully execute an unmodified version of
stuck-at faults across all hardware structures of the msme the Sun OpenSolaris operating system, but an additional 50
core. Each fault was activated at runtime, while the designinutes are necessary for the emulated machine to boot to an
was executing applications selected from the SPECInt 20B@eractive console. To avoid spending such a large amount
benchmark suite within the environment provided by OpenSof time to setup the system for a single fault injection and
laris, a commercial operating system. For each fault ilpect to enable a large volume of experiments, we implemented
we determine if its effects on the software benchmark weee checkpoint and restore mechanism. With the checkpoint
masked, caused a silent output corruptions (SDC), or whettsystem, the time required for a single board setup can be
the SWAT detectors were able to detect the hardware failushared among several fault injections (Section II-E). The

Overall, our FPGA-based experiments validate the resutteeckpoint operation copies the processor architectusdt s
previously reported by software-based simulations of SWATe.g. register files, PCs, trap stack) to shadow registettsimwi
but also reveal some interesting differences. First, theking the OpenSPARC processor design and also conservatively
rate we report in this work is higher than the one reportezbpies the entire processor memory space and file system into
in previous evaluations of SWAT performed on less accuraéeshadow memory area. Processor checkpoint data is stored
hardware and fault models. Second, the experiments thathin the OpenSPARC design, and the memory checkpoint
resulted in silent data corruptions were concentratediwigh is handled by the MicroBlaze firmware. Thus, a sophisticated
handful of hardware components — mostly complex functiongynchronization mechanism is necessary to coordinate thes
units such as the floating point unit, the multiplier, and thevo checkpoints to take a coherent snapshot of system’s
divider. Finally, the range of software anomalies detedted status. A restore mechanism, which roll backs the stateef th
much wider than previously recognized. system to a certain checkpoint state stored in the system, ha

To the best of our knowledge, this work is the first to evalualso been developed. In order to avoid issues with in-flight
ate and validate the effectiveness of lightweight fauledébn memory requests, we delay checkpoint operations until all
techniques for permanent faults on a commercial processoad/store queues have been emptied and no active insinscti
executing real applications on a commercial operatingesyst are in the pipeline. Additionally, we invalidate the L1 cash
through gate-level fault injections in all components of and the TLBs during both checkpoint and restore, and the
processor core. entire processor is reset before performing a restore tarcle
any leftover non-architectural state from the previousltfau

Il. EXPERIMENTAL METHODOLOGY NN)
injection experiment.

A. FPGA Platform

Our FPGA framework is inspired by the OpenSPAR@' CrashTest
Project at Sun Microsystems [15], where a OpenSPARC T1CrashTest is able to automatically instrument a digital
processor was mapped on to a Xilinx Virtex-5 FPGA. In thidesign with logic that mimics hardware faults at the gate
setup, a single processor core from the OpenSPARC T1 desligvel [11]. It takes as input the RTL of the design under
and its L1 caches are implemented on the FPGA, while tlegaluation and automatically injects faults leveraginguaate
L2 cache, memory controller and other basic peripherals dsult models. To maintain high evaluation speed without €om
emulated through the support of an ancillary microprocesseromising fault accuracy, the fault-enabled design is neapp
mapped on the FPGA device (a Xilinx MicroBlaze). to a hardware emulation platform (FPGA). In generating a
The OpenSPARC core was instrumented with logic tBPGA-ready fault-enabled system, CrashTest performs four
emulate fault models in various locations through CrashTdsansformations: 1) the original design is synthesizedubh
(Section 1I-B). The MicroBlaze processor already present Synopsys Design Compiler to produce a gate-level netljst; 2
the design was adopted to activate each fault location the produced netlist, comprising only basic gates, is aealy
runtime. Support for the SWAT detectors was also adddxy CrashTest to identify possible fault locations; 3) lotiat
in hardware(Section II-C). Significant modifications to thenimics fault behavior at the gate-level is inserted in deléc
original design were also needed to modify the memolgcations of the netlist; 4) the complete system is finally
controller to increase the size of the off-chip DRAM. Thenapped to the targeted FPGA device.
extra memory space was used to store the benchmarks usedultiple faults are injected into each synthesized design
in our experiments and the checkpointed memory. Finallgs this last step typically requires a considerable amoéint o

DRAM

Controller Standard
0

|
|
1
logic ; === = L
KA MieroBlaze il —, 3

Fault Control

Fault-enabled Checkpoint

module

Fig. 1. Experimental setup and design modifications

time particularly due to the synthesis and place-and-routar experiments, an example failure is a TLB miss exception
algorithms. Fault locations, when deactivated, do notraltthat occurs at an invalid trap level.
the behavior of the design. Each fault location can also Bérmware Checks: The OpenSPARC firmware runs on the
individually activated to produce the effects of the fallhis MicroBlaze to emulate the L2, packet receiving logic, anel th
approach allows CrashTest to amortize design setup timeemory controller. It performs a variety of consistency cite
among several experiments. as part of its communication with the OpenSPARC core (many
CrashTest can accelerate resiliency analysis of indlstriaf them would be performed in hardware in a real machine).
size designs by up to six orders of magnitude compar&de report failed checks as fault detections since they would
to equivalent software-based fault injections [11]. Mae originally cause the firmware to abort execution. Examples
CrashTest does not alter the original design functionalitinclude out-of-bounds addresses for loads and stores, and
allowing it to execute a complete software stack, includingvalid request types from the core.
the operating system and user applications. This charstiter Hardware Stalls: We detect a fault if a hardware thread has
is fundamental in testing the effectiveness of hybrid harehot issued instructions for a period longer than a predefined
ware/software fault tolerant solutions like SWAT. threshold (set to 300 million cycles, or about 30sec, to @voi
For this work, due to area limitations in the FPGA defalse positives).
vice in our experimental setup, we could not inject fault8bnormal Exits: These symptoms were detected via console
throughout the entire OpenSPARC core at once. We theref@@tput monitoring and include the following: segmentation
partitioned the design into multiple microarchitecturaidales fault, core dump, dynamic linker errors, errors from Open-
and injected faults in each of them (Section II-E). The tigninSolaris services, abnormal program termination, and fanwgr
achievable for the fault-enabled OpenSPARC core on oassertion failures. In all of these cases, a real systemdvoul
FPGA device is 100ns, enough to run the design at a frequenp to the firmware diagnosis/recovery at the point of failu
of 10MHz. Even though this frequency is four times slowedetection and before sending the error message output.
than the one reached by the original design, it still yields SWAT detectors not included: The main SWAT detectors not
speed-up of six orders of magnitude compared to a softwaigeluded here are a hang detector and a high OS detector [3]
based fault simulation with equivalent accuracy. and will be the focus of future work.

C. SWAT Detectors D. Workloads
We considered the following detectors based on the SWAT \we evaluated the effects of stuck-at faults in five applica-

philosophy, customized for the OpenSPARC_Z platform. In @, extracted from the SPECInt 2000 benchmark suite with a
real system, the detected symptoms would trigger a trapeto &y mpination of the test and reduced input sets [18] (Table 1)
firmware which would invoke the diagnosis [10] and recoveRy, selected smaller input sets due to the large runtime (

mechanisms [16, 17]. o 1 hour) on the FPGA platform of the reference input sets.
Fatal Traps and Kernel Panics:Previous SWAT work reports gince our experiments consisted in testing the effects amo

that these detect0|fs are commonly invoked in the presen_c_eﬂpgt 30,000 faults, running the reference input set for such
faults. Fatal traps include traps due to events such as@Vigenchmarks was not a practical option. All benchmarks were

by-zero, misaligned accesses, and maximum trap level [8. T, ijed for the SPARC-V9 architecture with default®3)
kernel panic detector is triggered when the OS enters impa'aptimizations.

routine. We could not recompile the version of the Open$®lar
kernel provided with the FPGA platform to implement these
detectors in software. Instead, we monitored the traps akd
kernel panic program counters in the hardware to triggesehe For this paper, we only focused on injecting stuck-at faults
detections. in various nets in the design (we studied both stuck-at-1 or
Hypervisor Crashes: We use error messages printed by thestuck-at-0 faults). As previously explained, we partigdrthe
hypervisor as a detection (again, we could not modify theore into multiple modules and injected faults in random
source to catch the symptom before the message is printed)ldcations in these modules. Table Il lists the units into akhi

Fault Injections and Outcomes

TABLE |

detectors previously described.

WORKLOADS
Benchmarks Tput Set Number of T EPGA Time Masked: The application finishes without a detection and its
Instructions output matches the golden application output.
175l-‘élir (p'face) med'“{" fteduced ﬁgm 59m2975 Silent Data Corruption (SDC): The application finishes
.mcC es m S

197 parser | medium reduced 913M 6m 165 without a detec’Flo.r?, but its output files dlﬁgr from the geid
555.vortex | medium reduced 5A7M 11m 553 output. Our definition of SDC is conservative — many of the
300.twolf test 415M 5m 15s outcomes differ in ways that are not important to the user,(i.

the fault is really masked) while others clearly show ermme
behavior (i.e., the fault is detectable by the user but may no
be recoverable). Further analysis is needed to separate suc

TABLE Il
MODULES OF THEOPENSPARCINJECTED WITH FAULTS

OpenSPARC T1 Gate Fault instances and will be the focus of future work.
S L‘é”'itc ORTGALD) ioggé 'OCTéO”S Timeout: To limit the experiment time, we declare a timeout
Divideg(DIV) 3277 31 if an injection experiment takes more tha.n.150% of the time
Error Correction and Control (ECC) 998 10 taken to run on the FPGA without faults injected. We expect
ExeC“t"aSltiCﬁ;‘:r‘(’,'wb"S'C (ECL) 114762675 11378 many of these cases to be detected by a hang detector.
Register Man‘;gemem Logic (RML} 1,206 11 Other: This category includes cases where the gpplication (_jid
Register Bypass Logic (BYP) | 5,938 56 not terminate in a normal way due to some idiosyncrasies
F'O?ggt?uigg:]t E;?grt]eﬂi#(?glfpu fé7SZSGO 25255 of our current system (e.g., the file system was too small
Load Store Unit (LSU) 24127| 635 and ﬁlled up, a det_ectqr was trigge_re_d after the fault was
Trap Logic Unit (TLU) 18,693 334 deactivated, the application output printing hung in a waat t

was hard to explain). Further study is necessary to further
understand such erroneous behaviors.

faults were injected, the total number of gates in each unit, After the outcome of the experiment is known, the processor
and the number of different fault locations that were useshd memory state are restored to our checkpointed state and
within each unit. The targeted number of faults injected iwe continue with the next fault experiment.
each module is a function of its area (approximated by the
number of gates in the module’s gate-level netlist) and was
computed for a confidence level of 95% and a confidenceOur experimental setup has allowed us to study 30,620
interval of 4% (Table II). For three hardware units, the IFUfaults, across all modules of the OpenSPARC T1 processor
LSU and TLU, the ratio between the number of faults andore design. Figure 2 shows the outcome of these experiments
number of gates is higher than for the other modules. Thisr each module, where the total fault injections for the miled
is due to the fact that these threes units, once instrumenged normalized to 100%. Overall we observe that 59.9% of the
with the checkpoint mechanism and faults, could not meftults are masked, 29.1% are detected, and only 0.94% result
timing requirements on the FPGA hardware. Thus, we hanl SDCs (conservatively). The remaining 10.1% are in the
to partition these three units into smaller sub-moduleg thd@meout or other categories. We analyze our results in Hetai
were instrumented separately. For each of these three msdubelow:
the total gate count for the submodules is higher than for thdasking: We observe a high masking rate of 59.9% on aver-
original unit since the synthesizer has a narrower optitiona age for permanent faults across all the modules. This isdnigh
scope. Note, however, that the increased ratio only ineseashan the masking rate observed in previous microarchiteetu
the confidence of our results for the experiments performéalel permanent fault injection results [3] (16%) or theagat
on the IFU, LSU and TLU. No faults were injected in thdevel results for the three modules simulated with SWATSim
memory array structures of the design (such as register fi[80% to 40%). We believe that the masking rate is high
caches, and TLBs) since these structures are protected viidtause: (1) The OpenSPARC core was originally designed
ECC or parity. for 4 hardware threads. However, our experiments used the

Experiments were run for each fault location in two diffedrerone threaded version of the core. Although only one thread is
phases of the five selected benchmarks. The first fault inject functional, the pruning in the design was not complete,ifegav
point is roughly after the initialization portion of the beim unutilized hardware components needed for multithreaded
mark, and the second point is roughly halfway between tlexecution. Such hardware, when injected with faults, césera
first injection point and benchmark completion. For eachhef t the masking rate. (2) Some modules such as MUL, FFU,
two fault activation points, a checkpointis taken befoegtstg and TLU contain paths that are not significantly exercised by
a fault injection campaign. We then wait for approximately 5our applications. For example, our applications do not aiont
million cycles (5 seconds) to allow caches and TLBs to warstreaming or floating point instructions that use all MUL and
up, and then activate a single fault location. We then monitBFU features. The masking rate for the TLU may also have
the system to determine if any of the following terminatiotveen impacted by the little exception handling requirecbiar
conditions are met: SPEC applications. Also, roughly 1/6th of TLU fault injemts
Detection: The fault is detected with one of the SWATwere in the performance counter logic and were all maskgd. (3

IIl. RESULTS

100% T ml 1= -'j- should be possible for a user or Application-level detettio
90% I WL L e mechanism to detect the data corruption.

80% . . . N " . b !
] TABLE Il

a 70% S HHHHHHH R DETECTIONBREAKDOWN
'% 0% I I e e A == | Kernel | Fatal | Firmware | Hypervisor | Abnormal | Hardware
:“E-" °] mSDCs Panics | Traps | Checks Crashes Exits Stalls
S-S | e I O R 315% | 25.7% | 10.8% 9.9% 5.8% 16.2%
o ° | o Timeouts
g 40% | ODetect
P OMasked
et I S I s I Y | IV. CONCLUSIONS ANDFUTURE WORK
20% A Y Y N | This paper tested the effectiveness of low-cost fault detec

tors as in SWAT on an industrial-strength microprocessoe co
with an extensive number of gate-level permanent faultcinje
N S tions Our gate-level injections are across the entire mame
alu div ecc ecl mul rml byp ffu ifu Isu tlu total — previous studies of permanent faults were limited eitloer t
o 2 Breakd ¢ tault infections by unit. Th < shothe unit microarchitecturally visible structures or could explayaly
uggder.studfgndotvr\:g)?-ax?susr:g{zg ;ﬁgsper)::eur?tla{ge 061: er}p)gsmeat feell ::1221 a few modules. Our fault mJeCthns were accomplished with
each category. the support of the CrashTest resiliency framework, a toat th
can automatically insert faults in the gate-level modeltadf t
design under test. Our results validate the previous pr@mis
There is natural circuit and application level masking vehernf lightweight detection techniques, but also exposed some
the faulty path is exercised but the faulty value does n@tcaff interesting phenomena, including the concentration of SDC
the application output; e.g., our detailed results (notwsho in a few modules and variety in the detectors invoked in a real
here) show that there is more masking for stuck-at-O thagstem.
stuck-at-1 faults. We injected a total of 30,620 stuck-at faults throughout
Detections: The overall detection rate is 29.07%. In Table llthe major hardware modules of the OpenSPARC core. The
we show the overall detection rate for each of our detectorsurrent set of SWAT detectors were able to detect 72.4% of
Of the Hardware Stalls, roughly 79% are due to faulinmasked faults, and many of the remaining undetected cases
injections in the LSU control logic. We also found thaimay be application or OS hangs. Overall, only 0.94% of the
Hardware Stalls and Firmware Checks are the only detectesgeriments led to silent data corruptions.
invoked for FFU faults. Overall, the OpenSPARC platform We would like to extend this work in several directions.
sees a larger variety of detectors invoked relative to pesi First, we would like to evaluate more fault models with
SWAT simulations. our higher coverage of the OpenSPARC hardware. Second,
Timeouts: A significant fraction of the fault injection experi-we would like to implement SWAT hang detectors to better
ments (7.8%) run much longer than the fault-free execution. evaluate and understand our timeout cases. Third, we want to
previous work, SWAT developed heuristics to detect sofewafurther evaluate the effectiveness of the SWAT detectos an
hangs and currently we are investigating whether such det@geasure their latency in detecting hardware faults. Rinale
tors can be used to convert the faults in the timeout categafpuld like to extend this work to a dual core system to evaluat

10%

0%

into detections. a full detection, diagnosis, and recovery scheme for SWAT.
Others: This category only affects 2.4% of our experiments.
It may be the case that a majority of these are caused due to V. ACKNOWLEDGMENTS

the experimental methodology or latent faults in the OS. We
need to further investigate these cases.

SDCs: Our experiments so far have yielded an overall SD
rate of 0.94%. Interestingly, we found that ALU, ECC, ECL,
RML, and IFU produced no SDCs. We also noticed that BY

The work at the University of Michigan was developed with
artial support from the National Science Foundation ared th
igascale Systems Research Center.

b The University of Illinois work is supported in part by the
Gigascale Systems Research Center (funded under FCRP, an

0,
LSU, and TLU have an SDC rate ef 1%. Only DIV, MUL, RC program), the National Science Foundation under Grant

: . S
and FFU have an SDC rate of over 1%, with FFU having t . . i
highest at 10.2%. Thus, the vast majority of the SDCs aT%CF 0811693, and a Computing Innovations fellowship.

concentrated in a few units, which should be the focus of any REFERENCES
additional reS"'enCy teChmqueS']) [1] S. Borkar, “Designing Reliable Systems from Unrelial@@mponents:
Furthermore, after closer examination of these SDCs, we The Challenges of Transistor Variability and Degradatid&EE Micro,
found 16.6% of them had error messages within their outputs, Vol 25, no. 6, 2005. _
I%“ M. Dimitrov and H. Zhou, “Unified Architectural Supporbf Soft-Error
For example, some cases occurred due to benchmark er

-)) i Protection or Software Bug Detection,” Imternational Conference on
consistency checking. Since these produce error messidges, Parallel Archtectures and Compilation Techniques, 2007.

(3]

(4]

M. Li, P. Ramachandran, S. Sahoo, S. Adve, V. Adve, and Mo
“Understanding the Propagation of Hard Errors to Softwane #m-
plications for Resilient Systems Design,” International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2008.

G. Lyle, S. Cheny, K. Pattabiraman, Z. Kalbarczyk, andlyer, “An
End-to-end Approach for the Automatic Derivation of Applion-
Aware Error Detectors,” inlnternational Conference on Dependable
Systems and Networks, 2009.

[5] A. Meixner, M. E. Bauer, and D. Sorin, “Argus: Low-Costp@prehen-

(6]

(7]

(8]

El

[20]

sive Error Detection in Simple Cores,” imternational Symposium on
Microarchitecture, 2007.

K. Pattabiraman, G. Saggese, D. Chen, Z. Kalbarczyk, Rndyer,
“Dynamic Derivation of Application-Specific Error Detectoand their
Implementation in Hardware,” irEuropean Dependable Computing
Conference, 2006.

P. Racunas, K. Constantinides, S. Manne, and S. S. Mjdder
“Perturbation-based Fault Screening,” nternational Symposium on
High Performance Computer Architecture, 2007.

N. Wang and S. Patel, “ReStore: Symptom-Based Soft Hdetection
in Microprocessors,”|EEE Transactions on Dependable and Secure
Computing, vol. 3, July-Sept 2006.

M. Li, P. Ramachandran, R. U. Karpuzcu, S. Hari, and S. édd¥Ac-
curate Microarchitecture-Level Fault Modeling for StuayiHardware
Faults,” in International Symposium on High Performance Computer
Architecture, 2009.

S. Hari, M.-L. Li, P. Ramachandran, B. Choi, and S. V. AdmSWAT:
Low-cost Hardware Fault Detection and Diagnosis for Moltec Sys-
tems,” in International Symposium on Microarchitecture, 2009.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

A. Pellegrini, K. Constantinides, D. Zhang, S. Sudhaka Bertacco,
and T. M. Austin, “CrashTest: A Fast High-Fidelity FPGA-bdsRe-
siliency Analysis Framework,” inCCD, 2008.

P. Civera, L. Macchiarulo, M. Rebaudengo, M. S. Reom@ad M. Vi-
olante, “FPGA-based fault injection techniques for fastleation of
fault tolerance in VLSI circuits,’Lecture Notes in Computer Science,
vol. 2147, 2001.

C. Lopez-Ongil, M. Garcia-Valderas, M. Portela-Gar and L. Entrena-
Arrontes, “An autonomous FPGA-based emulation systemdst fault
tolerant evaluation,” irFPL, 2005.

P. Ramachandran, P. Kudva, J. W. Kellington, J. Schumamd
P. Sanda, “Statistical Fault Injection,” imternational Conference on
Dependable Systems and Networks, 2008.

Sun Microsystems Inc., “OpenSPARC TL1.”
tl.sunsource.net/, 2005.

D. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood, “SatgNet:
Improving the Availability of Shared Memory Multiprocessowith
Global Checkpoint/Recovery,” imternational Symposium on Computer
Architecture, 2002.

M. Prvulovic, Z. Zhang, and J. Torrellas, “ReVive: Cdsffective Arch
Support for Rollback Recovery in Shared-Mem Multiprocesgoin
International Symposium on Computer Architecture, 2002.

A. J. KleinOsowski and D. J. Lilja, “Minnespec: A new speenchmark
workload for simulation-based computer architecture aese” |IEEE
Comput. Archit. Lett., vol. 1, 2002.

http://opearsp

