/<

.’P’
-’.’.':

o«
Q’ —

The Reliability Threat

Technology scaling = smaller devices vulnerable to failures

Increased in-the-field failures in commodity systems

P
=2 /
e g/
[

Design Bugs ...

Transient errors and so on

Wear-out
Need low-cost detection, diagnosis, recovery, repair solutions

Traditional solutions = high area, performance, power

Fault Detection [AsPLOS ‘08, DSN ‘08]

Goal: Effective, quick detection with minimal fault-free impact

Use symptom detectors to monitor anomalous SW execution

Simple hardware detectors with low area overheads

Fatal Traps Hangs Kernel High OS App Abort
N | — 2?2
‘~/ — . ?

Div by zero, Simple HW OS panics due | | High contiguou§ | App abort due
RED state, etc.| | hang detector to fault OS activity to fault

Low-cost SW detectors to aid HW detectors

Out-of-Bounds
HW/SW co-designed detector

Monitor legal limit of addresses

iISWAT
Compiler support to detect faults
Use likely invariants as detectors

Low false +ves, perf. impact Low perf, area overhead

Detection Results

100% 7 0~ - : . fffffffffffffffffffff =
Low SDC rate for all apps 80% 40 L I | [|
)
c
<0.5% of injections SDCs £ 60% 1 & | | | | | | |
(&
Short detection latency :GE-" a0% Tl B B[
. . ®20% 1 0 b]
>90% in <100K instr g 0
= 0%
_ Ql s || Q| 8|8
=Low-cost symptom detection 0 e é 0 Z g
feasible for HW faults ? ?
Permanents Transients

UMasked B Detected T App-Tolerated ESDC
* Does not include iISWAT detectors

S‘%AT A Comprehensive Low-Cost Solutlon for In-core Hardware Faults

Pradeep Ramachandran, Siva Kumar SastryHari, Manlap Li, SwarupSahoo, Robert Smolinsk,
Xin Fu, Lel Chen, SaritaAdve, VikramAdve

SWAT: A Comprehenswe Low Cost Solution

SWAT Resiliency)
Simple monitors+
Smart rescue =~ Zero
Cost Resiliency

fConventionaI Sol. \
Full redundancy
=High (100%) Cost

-

Current Systems
Fault= Failure

Fault Recovery [submitted]

Goal: Low-cost fault recovery in the presence of I/O
HW checkpoint to restore system state

Low-cost recovery for proc + memory
Buffer external outputs in dedicated HW

First low-cost implementation w/ simple HW

Avoids commonly ignored output-commit problem

Leverage SW support for device reset, input replay

Recovery Results

-
o
o

F<C"apache
-{*sshd
- Osquid

Low overheads @ 100K inst
<5% perf, <2KB area

Practical sol =delay <1M inst

-
o

mysq|

1L__!7M T T T |

10K 100K 1M 2M 5M 10M
Chkpt Interval (in instructions)

Client exec time with buffer/
without buffer

2.3% 1.5%

| EEE EEE
Q
@)
Z

High recovery at 100K interval

Injected Fau

N B O
SIS
X XXX
N .
R

Low perf, area impact

=1k 3 S 819 [35] 8|2
= = = = 213 = SI3
- - Q< Q<
o o o o)
Z z Z <l | = SWAT effective for low-cost
100K 10M 100K | 10M fault recovery
Permanents Transients
® Potential SDC BEDUE
@ Recovered L Masked

" Resilient Theme Task # 5.5.3 GSRC Annual

Symposium
September 28, 2010

through
October 1, 2010

Key Findings
SWAT effective for permanent, transient faults in many apps
Detection: <0.5% SDC rate in SPEC, server, media apps
Low overheads during fault-free execution
Recovery: Majority of faults recoverable in <100K instructions
<5% perf, near-zero area impact from recovery operations
Diagnosis: >95% of detected faults successfully diagnosed
Faulty core identified without spare core

TMR/DMR only for diagnosis = does not impact fault-free exec

Fault Diagnosis [DsN 08, MICRO ‘09]

Goal: Diagnose fault source without affecting fault-free exec
= No spares for diagnosis

Diagnose faulty core even when symptom from fault-free core
A B CD

) J--

Challenges Key Ideas

Isolated

Full-system

- N deterministic - deterministic
Multithreaded |/ __ eP1ay) /{__ replay
applications 4 N/ N [TAJ
- J No known Emulated f

g00d core TMR

ol
N J U ol

Diagnosis Results

99 100 99 87 100 78 99 95.9
100% T T T 1 T T T —

>95% successful diagnosis

80% | (-1 (1 (| | -+ [-

Latency <10M =invisible 60% +| -4 -1 | |4] b e |

H
o
o~

oo © °
o~ =) =)
[[

Detected Faults

uarch-level diagnosis for repair

N
o
o~

3

ROB
AGEN
Average

=SWAT diagnoses faults In
single and multi-core systems

Decoder
NT ALU
Reg Dbus
Int reg

O CorrectlyDiagnosed OUndiagnosed

Ongoing and Future Work
Ongoing: Prototyping SWAT on FPGA

Implement SWAT firmware in OpenSolaris
Demonstrate SWAT on multicore OpenSPARC FPGA

_everage Univ. of Michigan CrashTest for fault injection
Understand when/why SWAT works

Evaluate SWAT for off-core faults, other fault models

