

Resilient Theme Task # 5.5.3 AT: A Comprehensive Low-Cost Solution for In-core Hardware Faults

Pradeep Ramachandran, Siva Kumar SastryHari, Manlap Li, SwarupSahoo, Robert Smolinsk, Xin Fu, Lei Chen, SaritaAdve, VikramAdve

GSRC Annual Symposium September 28, 2010 through October 1, 2010

The Reliability Threat

Technology scaling ⇒ smaller devices vulnerable to failures Increased in-the-field failures in commodity systems

Wear-out

Design Bugs ... and so on **Transient errors**

Need low-cost detection, diagnosis, recovery, repair solutions

Traditional solutions ⇒ high area, performance, power

Fault Detection [ASPLOS '08, DSN '08]

Goal: Effective, quick detection with minimal fault-free impact Use symptom detectors to monitor anomalous SW execution

Simple hardware detectors with low area overheads

Recovered

Masked

Low-cost SW detectors to aid HW detectors

iSWAT Compiler support to detect faults Use likely invariants as detectors Low false +ves, perf. impact

Out-of-Bounds HW/SW co-designed detector Monitor legal limit of addresses Low perf, area overhead

SWAT: A Comprehensive Low Cost Solution

Fault Recovery [submitted]

Goal: Low-cost fault recovery in the presence of I/O

HW checkpoint to restore system state

Low-cost recovery for proc + memory

Buffer external outputs in dedicated HW

First low-cost implementation w/ simple HW

Avoids commonly ignored output-commit problem

Leverage SW support for device reset, input replay

Recovery Results <a>apache -**O**sshd Low overheads @ 100K inst **O**squid <5% perf, <2KB area mysql Practical sol ⇒delay <1M inst **5M** 1.5% **Chkpt Interval (in instructions)** High recovery at 100K interval Low perf, area impact No-Devid No-I/ ⇒ SWAT effective for low-cost 10M 100K fault recovery **Permanents** Transients ■ Potential SDC DUE

Key Findings

SWAT effective for permanent, transient faults in many apps

Detection: <0.5% SDC rate in SPEC, server, media apps

Low overheads during fault-free execution

Recovery: Majority of faults recoverable in <100K instructions

<5% perf, near-zero area impact from recovery operations

Diagnosis: >95% of detected faults successfully diagnosed

Faulty core identified without spare core

TMR/DMR only for diagnosis ⇒ does not impact fault-free exec

Fault Diagnosis [DSN '08, MICRO '09]

Goal: Diagnose fault source without affecting fault-free exec

⇒ No spares for diagnosis

Diagnose faulty core even when symptom from fault-free core

Ongoing and Future Work

Ongoing: Prototyping SWAT on FPGA

Implement SWAT firmware in OpenSolaris

Demonstrate SWAT on multicore OpenSPARC FPGA

Leverage Univ. of Michigan CrashTest for fault injection

Understand when/why SWAT works

Evaluate SWAT for off-core faults, other fault models