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The Reliability Threat

Technology scaling = smaller devices vulnerable to failures

Increased in-the-field failures in commodity systems
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Design Bugs ...

Transient errors and so on

Wear-out
Need low-cost detection, diagnosis, recovery, repair solutions

Traditional solutions = high area, performance, power

Fault Detection [AsPLOS ‘08, DSN ‘08]

Goal: Effective, quick detection with minimal fault-free impact

Use symptom detectors to monitor anomalous SW execution

Simple hardware detectors with low area overheads
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Low-cost SW detectors to aid HW detectors

Out-of-Bounds
HW/SW co-designed detector

Monitor legal limit of addresses

iISWAT
Compiler support to detect faults
Use likely invariants as detectors

Low false +ves, perf. impact Low perf, area overhead

Detection Results
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S‘%AT A Comprehensive Low-Cost Solutlon for In-core Hardware Faults

Pradeep Ramachandran, Siva Kumar SastryHari, Manlap Li, SwarupSahoo, Robert Smolinsk,
Xin Fu, Lel Chen, SaritaAdve, VikramAdve

SWAT: A Comprehenswe Low Cost Solution

SWAT Resiliency )
Simple monitors+
Smart rescue =~ Zero
Cost Resiliency

fConventionaI Sol. \
Full redundancy
=High (100%) Cost

-

Current Systems
Fault= Failure

Fault Recovery [submitted]

Goal: Low-cost fault recovery in the presence of I/O
HW checkpoint to restore system state

Low-cost recovery for proc + memory
Buffer external outputs in dedicated HW

First low-cost implementation w/ simple HW

Avoids commonly ignored output-commit problem

Leverage SW support for device reset, input replay

Recovery Results
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Low overheads @ 100K inst
<5% perf, <2KB area

Practical sol =delay <1M inst
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High recovery at 100K interval

Injected Fau
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Low perf, area impact
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Key Findings
SWAT effective for permanent, transient faults in many apps
Detection: <0.5% SDC rate in SPEC, server, media apps
Low overheads during fault-free execution
Recovery: Majority of faults recoverable in <100K instructions
<5% perf, near-zero area impact from recovery operations
Diagnosis: >95% of detected faults successfully diagnosed
Faulty core identified without spare core

TMR/DMR only for diagnosis = does not impact fault-free exec

Fault Diagnosis [DsN 08, MICRO ‘09]

Goal: Diagnose fault source without affecting fault-free exec
= No spares for diagnosis

Diagnose faulty core even when symptom from fault-free core
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Diagnosis Results
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>95% successful diagnosis
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Detected Faults

uarch-level diagnosis for repair
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=SWAT diagnoses faults In
single and multi-core systems
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Ongoing and Future Work
Ongoing: Prototyping SWAT on FPGA

Implement SWAT firmware in OpenSolaris
Demonstrate SWAT on multicore OpenSPARC FPGA

_everage Univ. of Michigan CrashTest for fault injection
Understand when/why SWAT works

Evaluate SWAT for off-core faults, other fault models



