
GSRC Annual

Symposium

Sep 3-4, 2009

Application Aware SoftWare Anomaly Treatment
Pradeep Ramachandran, Siva Kumar Sastry Hari, Manlap Li, Sarita Adve, Shobha Vasudevan

Resilient Theme Task # 1.2.2.5

Technology scaling  Increased in-the-field failures for commodity systems

Wear-out, infant mortality, design defects, etc.

Need low-cost in-field techniques for detection, diagnosis, recovery, repair

Strategy

Watch for anomalous software behavior  Symptom

Zero/low cost “always-on” monitors

Diagnose fault after detection

Rarely invoked => may incur higher overheads

Previous results for SPEC

95% of faults detected in 10M instructions

 Recovery needs checkpoint/output buffer window of 10M

0.8% of faults result in SDCs

This work: Application-aware methods to improve SDCs, recovery window

Motivation

Fault corrupts output produced by application traditionally  SDC

But some applications, even SPEC, tolerate errors in outputs!

Fault activation influences detection  Round-robin scheduling ↓ SDCs

• Low-Cost Address Out-of-Bounds detector

• Application-aware SDC and recovery window analysis

• Baseline SWAT on new I/O intensive client/server apps for I/O analysis

Results: Orders of magnitude improvement in SDC rate, recovery window, output buffer size

Fault

Error

Symptom

detected

Recovery

Diagnosis

Repair

Checkpoint

Checkpoint

Application-Aware SDC Rate of 8 SPEC Apps

Output error

tolerance

SWAT App-Aware SWAT App-Aware

Permanent Faults Transient Faults

< 0.1% 54 2 14 7

< 1% 54 1 14 0

Amortize resiliency cost for HW/SW faults

SW bug detection uses such detectors

Low-cost detector that monitors bounds

HW faultsinvalid/unallocated addr

HW/SW coordination to identify legal bounds

Fault unrecoverable only after corrupting SW state

SW recoverable with corrupted arch state

Detection latency - Arch state corruption  detection

Recovery window - SW state corruption  detection

Results:

>80% in SWAT recoverable in <10k instructions

>90% in Out-of-Bounds recoverable in <10k instr

Detector reduced latency, recovery window

SWAT - SoftWare Anomaly Treatment

Using Application-Awareness for SDCs, Recovery Window

Application-Aware SDC Analysis

Application-Aware Address Out-of-Bounds Detector

Application-Aware Recovery of Detected Faults

App Code

Globals

Heap

Stack

Libraries

Size known at

compile time

Communicated

to hardware

Instrumented

malloc reports

args to hw

Limits recorded

when function

Starts execution

Empty

Reserved

0x0

0x100000000

0xffff… (264-1)

App Address Space

Implications of Recovery Window for I/O and Recoverability

Larger recovery window  Overhead for buffering I/O, user perception

Results

50% faults detected by new detector

Dramatic reduction in recovery window

Reduces system state corruption by half

Results:

10M instruction window needs 80KB buffer

New 10K instruction window needs only 30 stores!

Can be buffered using Store buffer

New techniques have dramatic implications for recovery

Conclusions and Future Work

Application Awareness  Lower SDC rate, shorter recovery window w/ less I/O buffering

Future Work: App-aware SDC analysis of distributed client/server applications

Low overhead recovery techniques for short latency

