
GSRC Annual

Symposium

Sep 29-30, 2008

0%

20%

40%

60%

80%

100%

Decoder INT ALU Reg Dbus Int reg ROB RAT AGEN Average

P
e
rc

e
n

ta
g

e
 o

f
D

e
te

c
te

d
 F

a
u

lt
s

CorrectlyDiagnosed Undiagnosed

99.9 100 99 87 100 79 99 95.7

MSWAT: Low-Cost Hardware Fault Detection and Diagnosis for Multicore

Siva Kumar Sastry Hari, Manlap Li, Pradeep Ramachandran, Byn Choi and Sarita Adve

University of Illinois, Urbana-Champaign

Resilient Theme, Task # 1.2.2.5

Motivation

SoftWare Anomaly Treatment (SWAT) effective for HW faults in single-threaded apps

> Low SDC rate of 0.2% (dedicated poster)

But multicore systems w/ multithreaded apps here to stay

Does the SWAT approach work for multicore?

Symptom Detection

Fatal Traps, Hangs, High OS,

Kernel Panic, No-Forward-Progress

MSWAT Fault Detection

MSWAT Fault Diagnosis Algorithm

Key Results

>99% of unmasked permanent faults detected

Low SDC rate of 0.2% of injected faults

Several detections from fault-free cores

Symptom

detected

Capture fault

activating trace

Re-execute

Captured trace

Faulty

core
Look for

divergence

Diagnosis

TA TB TC TD

A B C D

TD TA TB TC

A B C D

Divergence

Example

TA

A B C D

No Divergence

Faulty core is B

Compare Traces

MSWAT: Diagnosis Challenges and Approaches

Previous SWAT diagnosis

Distinguish HW/SW faults

Core 2

Fault

Core 1

Store

Memory

Load

Symptom Detection

on a fault-free core

Capture fault activating trace

Native execution  No added support for replay

Record inputs to each thread (loads) for replay

Low hardware overhead for buffering

Diagnosis Results

>95% of detected faults successfully diagnosed

µarch non-determinism  undiagnosed faults

97% faults diagnosed in <10m cycles

<10ms on a 1GHz processor  invisible

93% diagnosed in 1 iteration w/ 100k instructions

<200kB logs  fit in lower level caches

Conclusions and Future Work

SWAT effective even for multicore systems with multithreaded apps

Future Work

Studying SWAT for faults in memory and off-core components

Distributed Client/Server Applications

Prototyping SWAT on FPGA in collaboration with University of Michigan

Faulty trace is a test vector  Apply SWAT for post-silicon debug and test

No symptom Symptom

Deterministic s/w /

permanent h/w bug

Symptom detected

No symptomSymptom

Faulty Good

Rollback/replay

on faulty core

Rollback/replay

on good core

Permanent

h/w defect

Continue

Execution

Deterministic

s/w bug

Non-deterministic s/w /

Transient h/w bug

Challenge in multicore: No known good core

Comparison requires known good core

Isolating the faulty core

Naïve solution: One spare core

High overhead, single point of failure

Our solution:

Key Challenge: Cross-Core Fault Propagation

Multithreaded apps share data across threads

 Fault may propagate across cores

 Is SWAT effective in detecting these faults?

 Symptom causing core is no longer faulty

Implicit assumption in prior SWAT work

Need to detect fault and diagnose faulty core

Re-Execute Captured Trace

Firmware emulated isolated deterministic replay  Zero hardware overhead

Compare retiring mem/ctrl instructions for divergence  Less comparisons

Iterative Diagnosis to reduce overheads

E.g., capture replay every 100k instructions till divergence

Challenges

Multithreaded

applications

Full-system

deterministic

replay

No known

good core

Isolated

deterministic

replay
Emulated TMR

Key Ideas

TA TB TC TD

TA

A B C D A B C D

TA TB TC TD

TA TB TCTD

TA TBTC TD

