MSWAT: Low-Cost Hardware Fault Detection and Diagnosis for Multicore

Siva Kumar Sastry Hari, Manlap Li, Pradeep Ramachandran, Byn Choi and Sarita Adve
University of lllinois, Urbana-Champaign

GSRC Annual
Symposium

Sep 29-30, 2008

‘ '
o s
i :':._;
P

>

Resilient Theme, Task # 1.2.2.5

Motivation MSWAT Fault Diagnosis Algorithm
SoftWare Anomaly Treatment (SWAT) effective for HW faults in single-threaded apps Diagnosis
> Low SDC rate of 0.2% (dedicated poster) Symptom - N - N - D
But multicore systems w/ multithreaded apps here to stay . Capture fault Re-execute .L:OOk L] Faulty
| detected | activating trace Captured trace divergence core
Does the SWAT approach work for multicore? | N Y
Key Challenge: Cross-Core Fault Propagation
Corel Core 2
Multithreaded apps share data across threads Q
Fault —> Example
— Fault may propagate across cores ‘-,
= Is SWAT effective In detecting these faults? St’re I Compare Traces
= Symptom causing core is no longer faulty Memory Load No Rivergence *
\ .
Implicit assumption in prior SWAT work * ~ 8 \¢ b Dlverﬁence
Need to detect fault and diagnose faulty core Symptom Detection [1| 10T | K > Faulty core is B
on a fault-free core
MSWAT Fault Detection Capture fault activating trace
Native execution = No added support for replay
Symptom Detection Key Results

>99% of unmasked permanent faults detected
Low SDC rate of 0.2% of injected faults
Several detections from fault-free cores

Fatal Traps, Hangs, High OS,
Kernel Panic, No-Forward-Progress

MSWAT: Diagnhosis Challenges and Approaches

Previous SWAT diagnosis
Distinguish HW/SW faults

Isolating the faulty core
Nailve solution: One spare core

Record inputs to each thread (loads) for replay
Low hardware overhead for buffering

Re-Execute Captured Trace
Firmware emulated isolated deterministic replay = Zero hardware overhead
Compare retiring mem/ctrl instructions for divergence = Less comparisons

lterative Diagnosis to reduce overheads
E.g., capture replay every 100k instructions till divergence

o Faulty Good High overhead, single point of failure Diagnosis Results
ymp l . Our solution: 4) togoy 50 100 9 87 100 79 99 957
[Rollback/rer)lay} m N Multllt_hr?aded >05% of detected faults successfully diagnosed £
on faulty core applications . _ g sowd+t 1 1 1
4 S PP) parch non-determinism = undiagnosed faults 3
No symptom S t _ _ S 600 44 L1 L L L
YIPoT TP /\ 97% faults diagnosed in <10m cycles g
Non-determlnIStIC S/W/ DetermIHISth S/W/ \ K \ . . - HC_) 40% Jd | N] L L] N I
Transient h/w bug Sermanent hiw bug Challenges FuII-syst_em No Known <10ms on a 1GHz processor = invisible g
| | determlmlstlc good core 93% diagnosed in 1 iteration w/ 100k instructions & 2% {4 | | |~ | 1 [[
repla - §
Continue RO”baCk/repIay . m \ p y J \) <200kB IOgS :> flt In Iower Ievel CaCheS 0% Decoder IINTALU .Reg Dbus. Int reg . ROB . RAT . AGEN . Average
Execution on good core T/T | |
Symptom/\No symptom] « Isolated) O) O CorrectlyDiagnosed O Undiaghosed
Key ldeas L :
Deterministic N y deterministic Emulated TMR Conclusions and Future Work
s/w bug h/w defect . replay] y SWAT effective even for multicore systems with multithreaded apps
A B C D A B C D Future Work
T, - - . . . Studying SWAT for faults in memory and off-core components

Challenge in multicore: No known good core
Comparison requires known good core

Distributed Client/Server Applications
Prototyping SWAT on FPGA in collaboration with University of Michigan
—aulty trace is a test vector = Apply SWAT for post-silicon debug and test

o) | . | (7 (58
e () 7. (e

NN

