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Motivation

SoftWare Anomaly Treatment (SWAT) effective for HW faults in single-threaded apps

> Low SDC rate of 0.2% (dedicated poster)

But multicore systems w/ multithreaded apps here to stay

Does the SWAT approach work for multicore?

Symptom Detection

Fatal Traps, Hangs, High OS,

Kernel Panic, No-Forward-Progress

MSWAT Fault Detection

MSWAT Fault Diagnosis Algorithm

Key Results

>99% of unmasked permanent faults detected

Low SDC rate of 0.2% of injected faults

Several detections from fault-free cores
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MSWAT: Diagnosis Challenges and Approaches

Previous SWAT diagnosis

Distinguish HW/SW faults

Core 2

Fault

Core 1

Store

Memory

Load

Symptom Detection

on a fault-free core

Capture fault activating trace

Native execution  No added support for replay

Record inputs to each thread (loads) for replay

Low hardware overhead for buffering

Diagnosis Results

>95% of detected faults successfully diagnosed

µarch non-determinism  undiagnosed faults

97% faults diagnosed in <10m cycles

<10ms on a 1GHz processor  invisible

93% diagnosed in 1 iteration w/ 100k instructions

<200kB logs  fit in lower level caches

Conclusions and Future Work

SWAT effective even for multicore systems with multithreaded apps

Future Work

Studying SWAT for faults in memory and off-core components

Distributed Client/Server Applications

Prototyping SWAT on FPGA in collaboration with University of Michigan

Faulty trace is a test vector  Apply SWAT for post-silicon debug and test
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Challenge in multicore: No known good core

Comparison requires known good core

Isolating the faulty core

Naïve solution: One spare core

High overhead, single point of failure

Our solution: 

Key Challenge: Cross-Core Fault Propagation

Multithreaded apps share data across threads

 Fault may propagate across cores

 Is SWAT effective in detecting these faults?

 Symptom causing core is no longer faulty

Implicit assumption in prior SWAT work

Need to detect fault and diagnose faulty core

Re-Execute Captured Trace

Firmware emulated isolated deterministic replay  Zero hardware overhead

Compare retiring mem/ctrl instructions for divergence  Less comparisons

Iterative Diagnosis to reduce overheads

E.g., capture replay every 100k instructions till divergence

Challenges
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