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Abstract—With the emergence of complex high-performance
microprocessors, functional test generation has become a crucial
design step. Constraint-based test generation is a well-studied
directed behavioral level functional test generation paradigm. The
paradigm involves conversion of a given circuit model into a set
of constraints and employing constraint solvers to generate tests
for it. However, automatic extraction of constraints from a given
behavioral hardware design language (HDL) model remained
a challenging open problem. This paper proposes an approach
for automatic extraction of word-level model constraints from the
behavioral verilog HDL description. The scenarios to be tested
are also expressed as constraints. The model and the scenario
constraints are solved together using an integer solver to arrive
at the necessary functional test. The effectiveness of the approach
is demonstrated by automatically generating the constraint
models for: 1) an exclusive-shared-invalid multiprocessor cache
coherency model and 2) the 16-bit DLX-architecture, from their
respective Verilog-based behavioral models. Experimental results
that generate test vectors for high level scenarios like pipeline
hazards, cache miss, etc., spanning over multiple time-frames are
presented.

Index Terms—Behavioral models, constraint solvers, functional
test generation (FTG), hardware description languages (HDL),
processor architectures.

I. INTRODUCTION

THE EVER-GROWING demand for greater performance,
complex functionality, and faster time to market, coupled

with the exponential growth in hardware size has resulted in the
functional test generation (FTG) being widely acknowledged as
the bottleneck of the hardware design cycle. The key focus of
the present day FTG approach is to generate test vectors that
can verify the complex functionality and importantly the inter-
action between multiple design units. The current practice is to
generate millions of random test vector sets. The random test
generation does not guarantee the coverage of all the function-
alities, especially in the case of complex designs. This neces-
sitates directed tests, that shall cover the corner cases not cov-
ered by the random tests. The interesting problem here is that
the corner cases are no more bit values on specified wires/nets,
but are much more abstract scenarios involving multiple clock
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cycles. For example, in a reasonably complex microprocessor
a typical corner case can be to generate an instruction which
accesses a memory and a register such that the register ac-
cess results in a data hazard and the memory access results in
a page miss. Specifying such higher-level corner cases to the
test generator becomes extremely cumbersome at lower levels
of abstraction. In addition, the crucial bottleneck with existing
test generation tools is their scalability with larger designs. It
is well-studied and reported in the literature that for a tool to
be scalable with larger designs, it is important to handle the
design at higher levels of abstraction, typically at the behav-
ioral level. This explains the need for a directed behavioral level
functional test generation (DBFTG) tool. Unlike many design
tasks like logic synthesis or place and route that have been au-
tomated with sophisticated tools, functional verification has re-
mained largely as a manual process. Languages like Verilog [1]
enable the designer to specify the model at the behavioral level.
The hardware verification languages (HVLs) [2] are capable of
working in synchrony with the behavioral level models. This can
automate generation of test benches. However, configuring the
HVL environment as a DBFTG requires a significant amount of
manual effort. In order to reduce the manual intervention, there
is a need for a tool that is capable of generating test vectors
from a given behavioral level description of the design under
test (DUT) and a higher-level test specification. This paper pro-
poses a constraint-based DBFTG technique that addresses the
previous issue.

II. PREVIOUS WORK

Previous work reported in the literature for the DBFTG may
be broadly classified into two, namely, the conventional auto-
matic test pattern generation (ATPG) [3]-based approaches and
the constraint-based approaches. Classical ATPG methods [3]
work at gate-level representations of the design and hence ex-
hibit less scalability with increasing design size. Some of the
recent ATPG-based techniques consider behavioral level design
models as inputs. DBFTG techniques using ATPG are reported
in [4] and [5]. These papers also present a comprehensive survey
of the techniques reported prior to them. The framework pre-
sented in [5] converts a given HDL representation to an assign-
ment decision diagram (ADD) representation and uses a mod-
ified ATPG algorithm, called the RTL ATPG to create func-
tional tests. However, no results were reported for processor
level circuits. The other issue is to express the test scenario to
the tool. It is not clear from [5] of how to specify a scenario
that spans across multiple time frames. These types of scenarios
arise specifically during verification of complex interactions be-
tween the modules of the processor.
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Constraint-based FTG approaches reported in [6]–[14],
model the given circuit description as constraints and use
constraint solvers to generate the required functional tests.
There are two approaches to constraint modeling, namely,
1) to model using Boolean constraints [that use a Boolean
satisfiability (SAT) solver] and 2) to model using integer con-
straints (that uses an integer solver). A Boolean circuit can be
encoded as a satisfiability equivalent conjunctive normal form
(CNF) formula using the method of [15]. In SAT procedures,
the CNF representation facilitates powerful methods to prune
the search space based on conflict analysis. However, since
practical gate-level circuits can be quite large, dealing with
substantially large CNF formulas results in unacceptable CPU
runtime. Another approach is to solve the Boolean satisfiability
problems based on binary decision diagrams (BDDs) [16],
[17]. The major limitation is that BDD-based methods like
BSAT require excessive time/memory to create BDDs for the
test circuits. A detailed survey of recent advances in SAT-based
formal verification is presented in [18]. Regular expression
algebra-based techniques for identifying relevant paths that
can be sensitized by test vectors in a precomputed test set to
test modules in a circuit model in which the control and the
data paths are separated are presented in [19] and [20]. The
previous technique is efficient only for circuit models in which:
1) the data and control paths are separate and 2) have design for
testability (DFT) [3] support. A SAT-based ATPG technique
for non-separable control-datapath circuits is presented in [21].

Techniques that employ word-level reasoning for FTG are
reported in the literature. The technique presented in [22] pro-
poses a functional vector generation method for RTL models
using word-level constraint logic programming based on as-
sertions. Constraint propagation techniques across different
domains, that is, (both arithmetic and Boolean domains) have
been explored to generate functional tests and high level ATPG
vectors on HDL descriptions [23]–[25]. A hybrid ATPG-based
modular arithmetic constraint solving technique for assertion
checking is proposed in [26]. A hybrid satisfiability approach
(HSAT) to generate functional test vectors for RTL design is
proposed in [27]. This approach was unified in [28] that yields
a single linear constraint problem instance. The approach
presented in [28] is not scalable for SAT instances with large
portions of sequential logic. The ideas discussed in [29]–[32]
use constraint solvers to generate tests for functional verifica-
tion of higher-level architectural features. One of the recent
results reported in literature dealing with micro-architecture
verification [33] concentrates on using a generic-test-plan
(GTP) approach to generate tests. However, the paper does
not explain how to generate directed tests that verify specific
micro-architectural features. A comprehensive survey of many
test generation techniques for processor verification is pre-
sented in [33]. Employing genetic algorithms to evolve efficient
test benches for behavioral level circuit models is studied in
[34] and [35]. A unified framework for functional verification
of processors using constraint solvers was proposed in [36].
This framework did not address automatic constraint generation
from circuit models.

This paper presents a fully-automated framework to generate
directed tests for functional verification of any digital system,
specifically microprocessors. The framework can be used to
verify the functionality at different levels of the processor archi-

tecture, namely, the instruction set architecture to micro-archi-
tecture, and also combinations of them. The proposed method-
ology accepts as input a behavioral level Verilog model and con-
verts it into an ADD [4], [37]-based data structure called the
assign-always-module ( ) graph. The graph is fur-
ther optimized and converted into a set of integer constraints.
These constraints are called the model constraints. The salient
feature of the methodology is that the previous steps are fully
automated, reducing the human effort significantly (almost nil).
The scenario for which a test has to be generated is also modeled
as constraints, namely, the scenario constraints. Both the model
and scenario constraints are together solved using an integer
constraint solver to generate the required test. Importantly, the
scenario may span across several clock cycles or time frames.
The salient features of the proposed technique are outlined in
the following.

A. Input to the Proposed Technique is a Behavioral Level
HDL Model

The behavioral level models are not only lesser in size but
more abstract than their corresponding gate level models. The
behavioral model expresses the system functionality more ex-
plicitly than their corresponding gate level representation. This
implies that the constraints generated from behavioral descrip-
tions capture the design functionality more comprehensively
than those generated from gate level descriptions. This is cru-
cial for functional level test generation.

B. Automatic Generation of the Constraint Model From the
Behavioral Model

Extraction of constraints from a behavioral or register transfer
level (RTL) description is a challenging problem [21]. The pro-
posed methodology does solve the problem comprehensively.

C. Word-Level Constraints in Contrast to Bit-Level Constraints

The proposed methodology deals with word-level con-
straints and employs an integer solver. This has the following
advantages.

• RTL-based design methodologies are widely used to model
the expected behavior of an integrated circuit before the
actual circuit is fabricated. Depending on the nature of the
intended circuit, an RTL model may contain variables of
varying width. Some of these variables, such as those rep-
resenting data operands, are used in arithmetic operations
that have a regular structure and meaning in the integer do-
main. Test generation approaches that use CNF-SAT and
ATPG operate at the Boolean level and require that the
RTL model be flattened. This results in loss of the reg-
ularity in the arithmetic operations that could have been
leveraged while reasoning about these operations for test
generation. Thus, the word-level reasoning is best suited
for the DBFTG.

• Integer solvers are better suited for word-level reasoning
than the SAT solvers. While the control portion of the de-
sign lends itself well to Boolean-level reasoning, word-
level reasoning can be used wherever possible to improve
the efficiency of the overall test generation. The intuition
behind improved performance is that the Boolean SAT
and conventional ATPG techniques are NP-complete in the
number of bit-level variables, whereas, word-level solving
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Fig. 1. DLX architecture.

complexity is NP-complete in the number of word-level
variables, which grow less dramatically with increasing
design functionality.

D. Single Constraint Model With Unified Control
and Data Paths

Unlike some of the previous approaches, the proposed tech-
nique does not demand a separation between control and data
paths.

E. Handling Sequential Designs

Most integer level constraint solvers are not built to handle
sequential behavior of circuits. A set of techniques have been
devised in this paper that converts sequential RTL description
to constraint models.

F. Scalability With Increasing Design Size

The number of model constraints generated grows linearly
with the size of the underlying graph.

Fig. 2. Tool flow.

G. Verifying Complex Scenarios

The proposed technique generates test vectors automatically
that can verify specific module interaction issues that can go
over multiple time frames.

The proposed methodology is used to verify the behavioral
description of the exclusive-shared-invalid (ESI) multiprocessor
cache coherency protocol model [38]. The description of the
previous experiment illustrates to the reader the different aspects
of generation of both model and scenario constraints, specif-
ically, for scenarios that span across multiple time frames. In
addition, The proposed methodology is employed on the well-
known DLX architecture [38]. The DLX architecture has a five-
stage pipeline. These stages are instruction fetch, instruction
decode/register fetch, execute/address calculation, memory ac-
cess, and write back. The architecture provides a good platform
to test the proposed methodology as it offers a variety of inter-
esting and complex micro-architectural features and scenarios
such as hazards, arithmetic logic unit (ALU) operations, etc. The
architecture is shown in Fig. 1. The code snaps that are presented
throughout this paper for explanation of the different concepts
are taken from the Verilog description of the DLX architecture.

III. DBFTG APPROACH

Fig. 2 presents the complete design flow for the proposed
approach. The approach has three major phases as listed in the
following:

1) automatic generation of the graph from the given
behavioral HDL model and its optimization;

2) automatic generation of the model constraints from the op-
timized graph;

3) modeling of scenario constraints and generation of the
functional test.

The following subsections explain the previous three phases in
detail.
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A. Generation and Optimization

In Fig. 2 the generator parses the input Verilog
code and hierarchically creates the graph. The syn-
thesizable part of the Verilog code that describes the be-
havior of a circuit has three major structures, namely, the

, the ,
and the [1]. Hence, the acronym

. The graph essentially has four entities, namely,
, , , and . Every module

definition in the Verilog code maps on to a entity of the
graph. Every always, assign, and module instantiation

statements in the Verilog code map on to a entity
of the graph.

The entity contains the various fields necessary to
encapsulate a module definition in Verilog. They include
of the module, an array of all the (always, as-
sign, and module instantiation statements) inside the module,
an array of all the (all and Verilog variables
including the and variables) inside a module, an
array storing all the indices of entries in the previous
array corresponding to the to the module, and an array
storing all the indices of entries in the previous array
corresponding to the to the module.

The entity contains the various fields required
to encapsulate the three types of structures, namely, a module
instantiation, an assign statement, and an always block. Two ad-
ditional types, namely, the
and the are defined to handle the loops and
stems, respectively, inside the design. The stems are signals
that drive multiple components. The various fields inside a

are and of the Component, pointer to
the of the Component (the Verilog module in-
side which the Component is defined), (input signals
to the component), (output signals of the compo-
nent), and the corresponding to the Component. The

captures the functionality of the and
is defined only for the that corresponds to an

block or an statement. The ADD framework is
an internal representation of the HDL description and has been
shown to be complete and efficient. More details on ADD are
available in [4], [5], [37], and [39].

The entity contains the various fields required
to encapsulate a signal inside a Verilog module. The sig-
nals connect the different entities in the
graph. The different fields inside a are and

of the signal, the of the signal,
the of the signal, the of the
signal (if it is a vector), and the value (if the signal
is assigned to a constant in the Verilog module).

The proposed approach is implemented for Verilog-based
HDL models. However, the tool is extendable to other HDLs
like VHDL. The code of the Verilog parser is written in the

language which captures the grammar of Verilog and uses
the syntax directed translation to construct the graph.

The graph generated before is optimized further as fol-
lows. The optimization stage refines the graph by two
levels so as to remove the entities that shall cause
redundant constraints in the integer model to be generated in the
next phase. The first level of refinement is the elimination of the

from the graph which is a redundant infor-
mation for the constraint model, as all the branches driven by the
stem component can be replaced by a single variable. Thus, the

, if kept in the input graph shall result
in more numbers of constraints and in turn reduces the perfor-
mance of the solver. However, if the test scenario assumes that a
branch of a particular is faulty, then may
be retained. The second level of the refinement is the removal of
the nodes in the graph corresponding to redundant con-
stants, redundant operators, and copy statements. For example,
the corresponding to & 1 can be replaced by the
one corresponding to , thereby eliminating the redundant
constant 1. Now, the statement is a copy statement, where

is the signal and is the signal. This copy
statement can be further eliminated by replacing the
signal by the signal. These refinements reduce the
number of constraints and the variables in the subsequent con-
straint model, hence improving the performance of the solver.

B. Model Constraints Generation

This section deals with different Verilog constructs, their cor-
responding representations and their equivalent constraint
models. This in turn, shall explain the automatic generation of
the model constraints from the given behavioral Verilog model.
The standard ILOG [40] constraint solver was used for experi-
mentation. Hence, a ILOG-type syntax is used to illustrate the
example model constraints in this paper.

1) and Variables: Two types of variables are com-
monly used in Verilog models, namely, the and vari-
ables [1]. These variables can either be bits or integers (bit-vec-
tors). The integer domain deals more with bit-vectors rather than
individual bits. This in turn, increases the modeling complexity.

Any bit-vector of size in the input behavioral model is
mapped on to a entity in the graph with size

. This is treated as an integer variable ( in ILOG)
whose value ranges from 0 to . The bit variables are also
treated as bit-vectors of size .

The and variables in a Verilog expression map on
to one of the two types of nodes on the graph, namely,
the read nodes and the write nodes. As the names suggest, the
variables on the right-hand side (left-hand side) of a Verilog ex-
pression map on to read (write) nodes. The read and write nodes
in the graph have two attributes attached to it, namely, the

and the . The need for these attributes arises from
the fact that a vector can be referred in the following three ways
in a Verilog code.

• Bit Select: For example, , that selects the third bit of
the bit-vector . The respective node in the graph
has and . Since, the integer
solver do not directly deal with bits, the corresponding
ILOG representation of is

where stands for integer division in ILOG.
• Part Select: For example, , that selects the four

bits starting from bit 13–16 of the bit-vector . The re-
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spective node in graph has and
. The corresponding ILOG representation is

• Entire Vector: For example . The respective node in
graph has and . The
ILOG representation models the variable as a normal
integer ( ).

The variables defined inside a module carry different values
for different instantiations of . To encapsulate this, every vari-
able in is declared as an array of size equal to the number of
instantiations of . For example, given that the variable is
defined in and that is instantiated twice, say, instantia-
tion 0 and instantiation 1, ( ) denotes the value of in
instantiation 0 (1). On similar lines, the third bit of in instan-
tiation 0 is modeled as

The part select of comprising of the four bits (bits 13–16) in
instantiation 1 is modeled as

2) Operators: Integer solvers do not support certain opera-
tors that are provided by the HDLs like bit-wise operators, con-
catenation operation [1], etc. The proposed technique handles
these operators by modeling them as functions described in the
following.

• Bitwise Operators: Consider the following Verilog state-
ment that uses the AND bitwise operation:

where , , and are all one bit Verilog variables.
The corresponding graph is shown in Fig. 3(a). The
nodes labelled and are the read nodes. The node
labelled is a write node. The node labelled & denotes
the bitwise AND operator. The triangle is a decision node
[37] that assigns the output of the operator node to the
write node if the input condition is true. In this case, the
input condition to the decision node is always set to be
true (node labelled 1). The structure is converted
to the following constraint by a function that is called on
encountering a bitwise operator node

The previous method is extended to handle the case,
wherein, , , and are vectors. Similarly all
other bitwise operators are modeled as constraints in the
integer domain.

• Logical Operators: Logical operators are of two types,
namely, Boolean and comparison operators.
1) Logical Boolean Operators: This includes logical AND,

logical OR, etc. These are handled similar to the bitwise
operators.

Fig. 3. ADD elements ofA M graph. (a) Bit-wise operator. (b) Logical oper-
ator. (c) Concatenation operator.

2) Logical Comparison Operators: Consider the fol-
lowing Verilog code:

if

else

The corresponding graph is shown in Fig. 3(b).
The previous structure is modeled as the following
constraint:

The previous constraint states that is equal to
, if else it is .

• Concatenation Operator: The concatenation operator is
modeled using simple arithmetic operations. For example,
consider the Verilog statement

where is a 16-bit register, is a 12-bit
wire, and sign is a 1-bit wire. The corresponding
graph is shown in Fig. 3(c). The corresponding model con-
straints are as follows:

3) Modeling Sequential Circuits: Every sequential circuit
can be represented by the conventional Huffman model [3]. The
combinational and the sequential parts are clearly distinguished
in this representation. To model the circuit in the integer domain
the following two basic principles are used:

• each sequential element is a variable in the integer domain;
• each combinational element produces a constraint on its

inputs and outputs in the integer domain.
The behavior of a sequential circuit over time frames can be
modeled as a combinational circuit using the conventional time
frame expansion approach, which unrolls the combinational part
of , times [3]. The previously mentioned approach for mod-
eling in the integer domain is illustrated by using an example of
a counter. The following Verilog code models a counter.
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Fig. 4. Counter.

Fig. 5. Time frame unrolled counter.

The Huffman Model of the counter is shown in Fig. 4. The reg-
ister labeled forms the sequential part and the
is the combinational part. It is easy to infer that at every clock
( ) pulse the value stored in the gets incremented
by 1.

The unrolled model of the counter is shown in Fig. 5,
wherein, the circuit is unrolled over three time frames. The
Counter blocks shown in Fig. 5 are just wires. Note that by
assigning, say, five to the wires in Fig. 5,
Figs. 7–9 are output in blocks representing the 2–4
time frames, respectively. This indeed captures the function-
ality of the counter over three time frames.

The register in Fig. 4 is a variable, ,
in the Verilog description. Without loss of generality, let there
be only one instantiation of the module containing the
variable. Therefore, the variable shall be denoted by
in the corresponding graph. To unroll a circuit over time
frames, another dimension is added to the variables to represent
the time frame. Thus, the variable , denotes the
variable in the th time frame. The combinational part
of the Huffman Model is the one that sets constraints on the
variable across time frames. The Verilog code and
the underlying graph imply the following constraint:

Thus, the clock in Verilog is realized as a time frame in the
corresponding constraint model.

4) Assign Statement: Given that a circuit is unrolled for
time frames, the assign statement in Verilog leads to

constraints on the variable for all time frames. For example, the
assign statement

inside the th instantiation of a module shall lead to the fol-
lowing set of constraints:

5) Always Statement: The constraint model for an always
construct in Verilog depends on the event in its sensitivity list.

Fig. 6. Always statement with clk.

Fig. 7. Always statement without clk.

The event can be either clocked or non-clocked and is repre-
sented by an event node in the corresponding graph. The
following code is a clocked always structure:

The graph for the previous case is shown in Fig. 6. The
model constraint for the previous graph for the th instan-
tiation of the module to which it belongs to will be

The following code is a non-clocked always structure:

if

else

The graph for the previous case is shown in Fig. 7. The
model constraint for the previous graph for the th instan-
tiation of the module to which it belongs to will be

6) Value Remembrance: The major challenge in modeling
Verilog constructs is the modeling of the memory elements. The
Verilog statements do not explicitly state that the value has to
be remembered to the next time frame. But, the modeling of
constraints should be in such a way that the values are carried
forward appropriately. The basic assumption in Verilog is that if
a variable is set under clock edge then it is a flip-flop. If a value
is not written in the flip-flop in a particular clock cycle due to
some condition , then the flip-flop retains the old value in the
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next time frame. For example, consider the following code snap
from the data memory description of the DLX model:

if

where is the enable signal, is the first ad-
dress line, and is the data input to the data memory. The
corresponding model constraint is as follows:

The previous constraint takes care of the fact that the old value
of is taken forward to the next time frame if
is 0.

7) Module Instantiation: Two major points have to be ad-
dressed to handle module instantiations, namely, handling the
variables and addition of interface constraints.

Handling Variables: The Verilog design description is hier-
archical and hence different modules can have variables with the
same name. While deriving the constraint model, the variables
with same names in different modules have to be distinguished.
To resolve this, a variable inside a module is
referred to as in the constraint model. Given
that two module definitions do not have the same name solves
the previous issue.

As mentioned earlier, every variable of the Verilog model
is converted to an array in the constraint model. For example,
the variable in the second instantiation of the module

in time frame is specified in the constraint model as
. While generating the scenario constraints the

user needs to specify variables corresponding to a particular
instantiation of a module. This demands a mechanism that sim-
plifies the specification process. Specifically, the user should
easily infer the index into the variable array corresponding to a
particular instantiation. This is achieved as follows.

Whenever a module is instantiated with a name, say,
, the size of the arrays corresponding to the , ,

, and variables defined inside increases by one.
This incremented size also denotes the number of times is
instantiated till that point. The hierarchical name of is
used as a constant with value in the constraint
model. Given that the hierarchical name of every instantiated
module is different [1] ensures that there are no conflicts. In the
constraint model the user can use the hierarchical name of the
instantiated module as an index to specify any variable inside it.

For example, in the DLX processor design there are module
definitions by the name and . The module definition of

is as follows

The module instantiates the with the name

The module, in turn, is instantiated by the module of
the Verilog hierarchy with the name . Note that the hier-
archical name of is , which is a
constant in the constraint model. The variable in the instan-
tiation of in the time-frame is specified as

Interface Constraints: These constraints are used to estab-
lish connections between the instantiating and the instantiated
modules. The number of interface constraints is equal to the
number of input and output ports of the instantiated module. For
example, given that the circuit is unrolled over time
frames, the model constraints generated to effect the interface
between the previous instantiation inside is as follows.

As mentioned earlier, as the clock in Verilog corresponds to time
frames in the constraint model, no constraint is generated for the

port above.

C. Automatic Constraint Model Generation

The previous sections explained the mapping between the
corresponding graph to the integer constraints for dif-
ferent Verilog constructs. As mentioned earlier, the conversion
from Verilog to the equivalent graph is done automati-
cally using a syntax-directed translation. This section presents
the algorithm i-Gen (refer Algorithm 1) that automates the con-
version from the graph to a constraint model. Before pro-
ceeding further, the following data arrays used by the algorithm
are defined.

• Array: An array of lists, one list per
every module declaration, storing the module name, and
input-output ports of the same.

• Array: An array of lists, one list per every
module instantiation, storing the module name, instantia-
tion name, parent module name, and list of input-output
ports. This list is used for generating interface constraints
due to a module instantiation, as described earlier.

• Array: An array of lists, one list per every
module declaration, storing the name and size of every
signal declared inside the module.

Algorithm 1 The i-Gen Algorithm

1: igen ( )
2: begin
3: read_block()
4: while do
5:
6: if then
7: ,

8: end if
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9: read_block()
10: while do
11:
12: read_block()
13: end while
14: while do
15: if then
16: ,

17: else if then
18: Add constraints such that fan-outs are equal to

fan-in
19: else
20:
21: end if
22: read_block()
23: end while
24: end while
25: for all element of do
26:
27: end for
28: end

The working of the algorithm i-Gen is described as fol-
lows. The routine used by i-Gen, reads a

from the input graph. This is either a
, , or . The first

read (in step 3 of i-Gen) from the graph will
always be a corresponding to the top-
most module of the Verilog hierarchy. Therefore, the condition
for the loop in step 4 is true for the first time. The
routine in step 5 updates the

array described before. As the topmost
module of the Verilog model is not explicitly instantiated,
steps 6 and 7 update the array for the current
top module declaration. Steps 10–13 update the
array described before on encountering a block. Steps
14–23 handle a block. As mentioned earlier, a

in the graph corresponds to either a module
instantiation, a stem or an always/assign statement of the input
Verilog code. Steps 14–16 handle the case when the
is a module instantiation by updating the array.
Steps 17 and 18 handle the case when the is
a stem by adding constraints such that the variables corre-
sponding to the fan-out branches are equal to the variable
corresponding to the stem. Step 20 is executed when the
component is of type always/assign. In this case, the function

will generate
the necessary constraints for the corresponding always/assign
statement as described in the previous section. Steps 25–27
generate the interface constraints for all module instantiations.
It is interesting to note that the previous algorithm automatically
handles the hierarchy of the behavioral HDL model.

D. Dynamic Unrolling

As mentioned earlier, each variable in the ILOG constraint
model is a 2-D array. The first dimension refers to the module in-
stantiation number and the second refers to the time frame. The

proposed method facilitates automatic unrolling of the model
for any number of time frames. An interesting case study for
dynamic unrolling is as follows. Given the initial context of a
translation lookaside buffer (TLB), to find a test that shall evict
a particular entry of the TLB in least number of access cycles.
The maximum number of time frames for which
the model can be unrolled is specified by the user. The tool dy-
namically unrolls for time frames, for different values of ,

, in a binary search like fashion to find the
optimum number of time frames leading to a solution. This en-
ables the user to find the optimum number of time frames needed
to come up with a solution for a given scenario.

IV. SCENARIO CONSTRAINT GENERATION

This section explains the generation of scenario constraints
through examples from the DLX architecture.

1) Scenario 1: Generate a sequence of instructions that will
not create RAW data hazards [38] in the next five cycles starting
at time frame . The scenario constraints are as follows:

for

for

The previous constraints ensure that the instruction destination
register selected during the time frame is not used as
the instruction source registers and during the time
frames to , .

2) Scenario 2: Generate a sequence of instructions that
will not create WAW data hazards [38] in the next three cycles
starting at time frame . The scenario constraints are as
follows:

for

for

3) Scenario 3: Generate a sequence of instructions that
will generate an ALU output to be in time frame
and in time frame . The scenario constraints are as
follows:

4) Scenario 4: Generate a sequence of instructions that will
access consecutive memory address starting from in the
next five consecutive clock cycles. The scenario constraints are
as follows:

for

The previous constraints ensure that the input address of the data
memory is set to in time frames , .
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5) Scenario 5: Generate a sequence of instructions that will
access the same memory address, , in the next five consec-
utive clock cycles. The scenario constraints are as follows:

Hybrid Scenarios can be easily created by adding the desired
constraints together. For example, a hybrid scenario, wherein,
the scenarios 1 and 4 mentioned previously should occur to-
gether is modeled as follows:

for

6) Constraints for Invariant Properties: The constraints
are very effective to model certain invariant properties of the
design. These invariant properties are crucial for generating
valid tests. A very interesting example is in the case of the
TLB, wherein, all the valid TLB entries in the TLB should have
different linear addresses stored in them. This is an invariant
property on the key element of any associative/content-address-
able memory (CAM). Consider the TLB with locations. The
array store the linear address and the bit-array

specifies whether the entries are valid or not. In
other words, if , then is a valid linear address,
else it is not. The following constraints model the invariant
property:

for

The previous constraints ensure that stores the linear
Address , if . Note that, if , then

. These are negative numbers and so
they are different from the positive valid linear addresses. The
previous assignment also ensures that no two negative numbers
stored in ARR are the same. Note that is used, because

and that 0 can be a valid linear address. The
ILOG construct constraints every entry
of the array ARR to be different. As all negative entries are
different, the previous constraints imply that all positive entries
that correspond to valid linear addresses should be different.
Hence, the invariant property of the TLB mentioned before
is modeled. The invariant constraints are used along with the
model and scenario constraints to generate valid tests.

V. EXPERIMENTAL RESULTS

A. ESI Cache Coherency Protocol Model

The ESI is a standard multiprocessor cache coherency pro-
tocol used in the context of several processors, each having their
own cache and sharing a common global memory through a
shared bus as shown in Fig. 8. Every cache line/block in each

Fig. 8. Multiprocessor cache model.

Fig. 9. Processor-initiated state change.

of these caches can be in any one of the three states, namely,
exclusive (E), shared (S), or invalid (I). The state of a cache line
can be modified either due to a memory access by the processor
owning it (processor-initiated) or due to some other processor
(non-owner) accessing the same address stored in the cache line
(bus-initiated, as it is inferred by snooping on the shared bus)
[38]. The change of the state of a cache line, both processor- and
bus-initiated, are modeled as state machines [38] and shown in
Figs. 9 and 10, respectively.

The Verilog model for the ESI protocol used for experimen-
tation in this paper consists of two caches, each having two in-
terfaces, namely, the processor interface and the shared-bus in-
terface, as shown in Fig. 8. The processor interface for each of
the caches has two inputs to the model, namely, the (ad-
dress lines corresponding to the address to be accessed by the
procssor) and the ( ) line specifying whether
the processor wants to Read or Write to the memory location
specified by the lines. The caches share the bus based on
a token ring protocol. Since there are only two caches in the
current model, the is modeled as a 1-bit Toggle flip-flop.
When the takes the value 0, the Cache0 has control over
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Fig. 10. Bus-initiated state change.

the bus, while the Cache1 snoops the bus. Similarly, when the
takes the value 1, the Cache1 has control over the bus,

while the Cache0 snoops the bus. The shared-bus interface for
each of the caches has the following signals.

• : It is a set of (bidirectional) lines used
by the cache to: 1) output the address generated by the
processor owning it to the shared bus, while it controls
the bus and 2) to snoop the address generated by the other
processor (non-owner) while not in control of the shared
bus.

• : It is an (bidirectional) line used by the
cache to: 1) output to the shared bus, whether the processor
owning it wants to Read or Write to the global memory,
while it controls the bus and 2) to snoop whether the other
processor (non-owner) is reading or writing to the global
memory, while not in control of the shared bus.

• : A 1-bit input indicating the value of the to
the cache.

• : A 1-bit output line used by the cache to in-
validate a transaction on the bus. More details on the need
for invalidation is available in [38].

In the current model, the address lines are 8-bit wide. The
caches are directly mapped and can store 16 words. Hence,
the first four least significant bits of the address are used for
mapping on to the cache lines and the remaining four bits are
used as tag bits that are stored in the cache line. To make the
model simple, in case a memory access initiated by a processor
P leads to a conflict ( signal raised by the cache of
the other processor), it is assumed that the conflict is resolved
and the access initiated by P is completed within the same
cycle. The cache model was automatically converted into a set
of model constraints. The objective was to generate functional
tests to verify the state machines shown in Figs. 9 and 10. The
zeroth cache line of both the caches that map the addresses

was used for this purpose. Table I shows the
results of the experiment conducted on the previous model. The
third column in Table I shows the initial value of the . The
fourth column shows the desired states of the zeroth cache lines
of both caches (Cache0 and Cache1 in order), represented as
an ordered pair, one pair for every time frame, over consecutive
set of time frames. The corresponding time frame number (TF)

TABLE I
EXPERIMENTAL RESULTS FOR THE ESI MODEL

is shown in the second column of Table I. The fifth column
of Table I shows the desired initial values of the tag bits of
the zeroth lines of Cache0 and Cache1 in order, stored as an
ordered pair. The values in the third, fourth, and fifth columns
of Table I are input to the solver as scenario constraints. The
sixth and seventh columns of Table I show the output of the
solver, which is the required functional test. The sixth column
shows the inputs to be applied to the address lines ADDR0
and ADDR1 in order, represented as an ordered pair, one pair
for every time frame, over consecutive set of time frames. The
seventh column states the action (read or write) taken by the
processors.

The first experiment in Table I involved two time frames.
First, the model was unrolled two times (for two time frames).
Then, the following scenario constraints were added:

which states that the value of in the zeroth time frame
is 1, indicating that Cache1 controls the bus in the zeroth time
frame. Note that the variable is implemented as a toggle
flip-flop in the design. Hence, the following automatically gen-
erated model constraint

would ensure that the value of is 0 in time frame 1,
thereby transferring control of the shared bus to Cache0. The
other scenario constraints added were as follows:

The previous constraint ensures that the state of the zeroth cache
line of the zeroth instantiation of the cache (Cache0) in the ze-
roth time frame is invalid
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The previous constraint ensures that the state of the zeroth cache
line of the first instantiation of the cache (Cache1) in the zeroth
time frame is invalid

The above constraint ensures that the state of the zeroth cache
line of the zeroth instantiation of the cache (Cache0) in the first
time-frame is invalid.

The previous constraint ensures that the state of the zeroth
cache line of the first instantiation of the cache (Cache1) in the
first time frame is exclusive. The sixth and seventh columns
of Table I shows the output of the constraint solver, which
suggests that processor 1 should write to address 16 to cause
the required change in the state of the cache line 0. From the
definitions of the cache model and the state machines shown in
Figs. 9 and 10, it can be inferred that the previous functional
test generated by the solver, indeed causes the desired change
in the state of the cache line.

Experiment 3 in Table I starts with the initial state of the ze-
roth cache line of Cache0 and Cache1 as invalid and exclusive,
respectively. The required scenario was that in the subsequent
three time frames the states of the cache lines should alternate
between invalid and exclusive. Initially, the tag bits in the zeroth
cache line of processor 1 was set to the value 13, which maps the
address 208. From the definition of the caches, it could be in-
ferred that the address 208 output by the constraint solver indeed
maps on to cache line 0. From the definitions of the state ma-
chines shown in Figs. 9 and 10, it is seen that the functional test
generated by the constraint solver indeed causes the desired sce-
nario. In a similar manner, functional tests can be generated to
cover every desired path of the state machines shown in Figs. 9
and 10.

B. 16-bit DLX Processor Model

This section presents the results from employing the proposed
methodology on a 16-bit DLX processor model. All the results
reported are measured on an HP workstation xw4200. The time
and memory utilized are as reported by the ILOG constraint
solver.

1) Scalability of the Constraint Model: Generation of a
constraint model for multiple time frames consumes time and
memory that grows linearly in the number of time frames.
Table II shows the time and memory required to generate
the constraint model for a full adder unrolled for different
number of time frames. The results suggest that the solver
performance is linear with the number of time frames unrolled.
The important point to note is that in each of the cases shown in
Table II a single constraint model is generated that represents
the complete unrolled circuit.

2) Size of the Constraint Model: Table III (a)–(c) compares
the behavioral Verilog model of the DLX processor with its cor-
responding graph and the constraint model. It is evident
from Table III (a) and (c) that the number of variables ( )
and constraints ( ) in the optimized constraint model is far

TABLE II
RESULTS OF FULL ADDER

TABLE III
COMPARISON OF VERILOG, A M AND CONSTRAINT MODEL

FOR A 16-BIT DLX PROCESSOR

TABLE IV
TIMING ANALYSIS

less than the number of gates ( ) needed to realize the
model. This justifies the claim that a tool dealing with higher
level models of abstraction handles data structures of lesser size
than a tool dealing with lower levels. This contributes signifi-
cantly towards the better scalability of the former in comparison
to the latter with respect to the design size. The benefits of opti-
mizing the graph can be inferred from Table III (b) and (c).
As seen in Table III (b) there is a 46.7% (35.3%) decrease in the
number of signals (operators) of the graph due to the op-
timization. As an effect of this optimization, as seen in Table III
(c), there is a corresponding decrease of 46.94% (61.62%) in the
number of variables (constraints) in the underlying ILOG-based
constraint model.

3) Generation of the Constraint Model: Table IV shows the
time required by various phases in generating the ILOG model
for the 16-bit DLX processor model. The total time consumed
for the entire three phases was around 0.35 s. This illustrates
the efficiency of the proposed methodology in handling large
and complex designs.

4) FTG for User-Specified Scenarios: This section deals
with time and memory requirements for test generation under
various scenario constraints.

Table V shows the time taken for unrolling the DLX model
to 10 time frames and generating test vectors to access two
specified memory addresses under three different scenarios. In
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TABLE V
INSTRUCTION GENERATION FOR MEMORY ACCESSES

TABLE VI
INSTRUCTION GENERATION WITHOUT HAZARDS

the first scenario, the time frame numbers for the memory ac-
cess and the memory addresses were different and independent
of each other, while, in the remaining two scenarios, the two
memory addresses were dependent, leading to constraints that
were dependent on each other.

5) Observation 1: From Table V, it is seen that the constraint
solver consumes less time and memory to solve independent
constraints in comparison to dependent constraints. The depen-
dency is measured across time frames. Table VI shows the time
taken for unrolling the DLX model to 6 or 10 time frames and
generating test vectors that ensure no RAW hazard over all the
time frames and no WAW hazard within any three or five con-
secutive time frames as stated in the Scenario column of the
same.

6) Observation 2: From Table V, it is seen that the con-
straint solver consumes more time and memory with increasing
number of time frames for which the model is unrolled.

The scenarios stated in Tables VII and VIII had additional
constraints that initialized the 16 registers of the DLX processor

to , . Table VII shows the time taken for un-
rolling the DLX model to six time frames and generating test
vectors that ensure that the output of the ALU ( ) carry
the specified values in the specified time frames as stated in the
Scenario column of the same. The generated test vector may
have hazards.

7) Observation 3: From Table VII, it is seen that the addition
of more number of independent (across time frames) constraints
does not significantly impact the performance of the constraint
solver.

The Table VIII shows the time taken for unrolling the DLX
model to six time frames and generating test vectors that ensure
the scenarios specified in Table VII without RAW hazards over
all the time frames and no WAW hazard within any three con-
secutive time frames. The assembly code generated for Scenario
3 of Table VIII is as follows.

TABLE VII
INSTRUCTION GENERATION FOR ALU OPERATIONS

TABLE VIII
INSTRUCTION GENERATION FOR ALU OPERATIONS WITHOUT HAZARDS

ADD R1 R2 R3; ADD R3 R13 R0; MUL R2 R5 R2; ADD
R1 R11 R9.

As mentioned earlier, given that registers initially store the
value , , implies that the previous assembly code
indeed generates the specified scenario.

8) Observation 4: Comparing Tables VII and VIII reveals in-
teresting issues. The solver took less time to solve the first sce-
nario in Table VIII when compared to the first one in Table VII.
This is in spite of the fact that the former is a combination of the
latter and additional constraints. The reason for the same would
be that the additional constraints in the former scenario reduced
the search space, essentially directing the solver towards the
goal. Such a trend is not seen in the subsequent two scenarios
in Tables VII and VIII.

C. Constraint Model for Logic Simulation

It is interesting to note that the constraint model of a given
HDL behavioral code can be used for logic simulation. Table IX
presents details on simulation of the constraint model of the
DLX processor. The model was unrolled for the number of time
frames as stated in Table IX. The instructions in the
column of Table IX were applied to the initial time frame as con-
straints. Solving the constraints is equivalent to simulating the
DLX processor over the next cycles, where is the number
of times the model is unrolled. In other words, for the first
scenario in Table IX, the DLX constraint model was unrolled
for seven time frames and the variables corresponding to the
instruction memory of the first frame was constrained to the
binary equivalent of the instruction . The initial-
ization constraints included constraints for the variables corre-
sponding to the registers of the processors. These variables were
constrained to some known values. Solving the constraint model
resulted in the variable corresponding to register R1 being as-
signed the value stored in the memory address pointed to by
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TABLE IX
LOGIC SIMULATION OF DLX CONSTRAINT MODEL

register R2. Similar is the case for the other two scenarios pre-
sented in the Table IX. These type of scenarios yield constraints
that represent the forward flow of data and hence easy to solve.
This is reflected by the lesser amount of time and memory con-
sumed by the ILOG solver as reported in Table IX.

VI. CONCLUSION AND FUTURE WORK

This paper proposed a methodology for automatic conversion
of a given behavioral HDL model into a set of integer con-
straints. The constraint model was further used for generation
of directed functional tests. The conversion and optimiza-
tion procedures are similar to that of logic synthesis. Integer
(word-level) constraint solvers were employed by the proposed
methodology in contrast to the widely reported SAT-solvers.
The effectiveness of the proposed approach was illustrated by
employing the same on a 16-bit DLX processor behavioral
model and using the same to generate functional tests for
different interesting scenarios. The methodology enabled the
user to express the corner case to be tested as an higher-level
constraint-based test specification spreading across multiple
time frames. This paper presents examples of such test spec-
ifications. To further enhance the versatility of the proposed
methodology, the following features can be easily incorporated.

A. Multi-Clock Designs and Latches

The concept of time-frames discussed so far assumed that
all the storage elements are flip-flops, and, they are driven by
a single clock. This can be extended for Multi-clock and Latch
based designs by employing a verilog type technique, wherein,
a basic simulator time-unit is assumed and every event (clocks
and changes in wires) in the design is sampled at this time-unit
[1]. A similar approach may be employed here, wherein, the
time-frame is determined by the basic time-unit rather than a
single global clock period.

B. Handling Large Vectors

As the size of vectors increases, the search space increases
exponentially. One approach to reduce the search space will be
to reduce the range of the variables. For example, none of the
current integer solvers can efficiently support a 64-bit vector.
Even assuming that solvers have such large integer support, it
increases the search space enormously, thereby decreasing the
performance of the solver. A solution to this problem is to split
a large vector into small variables. For Example, a 32-bit vector

can be split into 4 different variables, say, , , and

, each of size 8-bits. Each new variable has a range of 256
thereby decreasing the per variable search space for the solver.
This can boost up the performance of the solver.

As observed in the experimental section, the constraint
solver performs much efficiently when the underlying con-
straints are more independent. Future work shall concentrate on
concretizing this notion of independent constraints, specifically
trying to arrive at constraint models with higher degree of
independence among its constraints.
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