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Abstract

The problem of peak power estimation in CMOS circuits
is essential for analyzing the reliability and performance of
circuits at extreme conditions. The dynamic power dissi-
pated is directly proportional to the switching activity (num-
ber of gate outputs that toggles (changes state)) in the circuit.
The Power Virus problem involves finding input vectors that
cause maximum dynamic power dissipation (maximum tog-
gles) in circuits. As the power virus problem is NP-complete
the gate-level techniques are less scalable with increasing
design size and produce less optimal vectors. In this pa-
per, an approach for power virus generation using behav-
ioral models of digital circuits is presented. The proposed
technique converts the given behavioral model automatically
to an integer (word-level) constraint model and employs an
integer constraint solver to generate the required power virus
vectors. Experimenting the proposed technique on ISCAS
behavioral level benchmark circuits and the standard DLX
processor model show that the above technique is fast and
yields higher-quality results than the known gate-level tech-
niques. Interestingly, the paper attempts to generate an as-
sembly program that cause the maximum dynamic power
dissipation on the given DLX processor model. To the best
of our knowledge the proposed technique is the first reported
that considers power virus generation using behavioral level
models.

Keywords– Behavioral Models, Dynamic power dissipa-
tion, Power virus, Integer Constraint Solvers, Hardware De-
scription Languages (HDL).

1 Introduction

The high transistor density, together with the growing im-
portance of reliability as a design issue, has made early es-
timation of worst case power dissipation (peak power esti-
mation) in the design cycle of logic circuits an important
problem. The peak power consumption corresponds to the

highest switching activity generated in the circuit under the
test during one clock cycle.

In this work we made the assumption that the output ca-
pacitance for each gate is equal to the number of fanouts.
Therefore, the total switching activity is the parameter that
needs to be maximized for maximum power dissipation. Ac-
curate estimation of maximum power consumption for a
combinational circuit involves finding a pair of input vec-
tors which when applied successively, maximize the num-
ber of toggles, among all possible input vector pairs. These
two vectors can be applied one after another in any order
repeatedly to cause the estimated power dissipation for an
indefinite time. Given that the circuit has n primary inputs,
there are 4n possible two input vector sequences to be con-
sidered for an exhaustive search. It is easy to see that the
power virus generation problem for sequential circuits re-
duces to solving multiple instances of the same problem on
its underlying combinational part. Let Si denote the state
of a sequential circuit S at the beginning of the clock cy-
cle i and Ii denote the primary inputs at the clock cycle i.
The power virus problem on S is to find a k-cycle sequence
(S1, I1, S2, I2, · · · , Ik, Sk+1), such that, Sk+1 = S1, and at
every cycle the input Ii is calculated so as to generate maxi-
mum toggle activity in the combinational portion of S. Two
different power estimation metrics are defined in the context
of sequential circuits, namely, the peak single-cycle power
and the peak sustainable power [10]. The former denotes
the maximum power dissipated during any one cycle of the k

cycles while the latter denotes the average power measured
across the k cycles. The values of I0 and hence S1, is got by
warming up the circuit as discussed in [7].

2 Previous Work

This section presents the work reported in literature for the
power virus generation and constraint model based test gen-
eration and proceeds to present the salient contributions of
this paper.

Several approaches have been proposed to estimate the
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maximum power consumption for CMOS circuits in [7, 8,
10, 12, 13].In [8] Devadas et al. reduced the problem to a
weighted max-satisfiability problem on a set of multi-output
Boolean functions obtained from the circuit logic descrip-
tion. This approach took time exponentially proportional to
the number of primary inputs (PIs) and hence applicable only
to small circuits. Kriplani et al. [12] have presented a pattern
independent algorithm to find an upper bound on the max-
imum instantaneous current through the power supply lines
of CMOS circuits. An estimation of average switching in
combinational circuit using symbolic simulation is discussed
in [13]. An upper bound on the number of simultaneous
switching gates using partitioning techniques is presented
in [15]. On the sequential end, several techniques are pro-
posed in [7, 10]. Of these, the genetic algorithm presented
in [10], addresses both single-cycle power and sustainable
power metrics. Four different heuristics are presented in [10]
and it assumes a variable-delay model.

Constraint propagation techniques across different do-
mains, that is, (both arithmetic and boolean domains) have
been explored to generate functional tests and high level
ATPG vectors on HDL descriptions [6, 9]. The ideas dis-
cussed in [3, 14] use constraint solvers to generate tests for
functional verification of higher-level architectural features.

3 Contribution of this paper

This paper proposes a methodology for power virus genera-
tion using a behavioral description of a circuit. The salient
features of the proposed technique are outlined below:

1. The input to the proposed technique is a behavioral
level HDL model: The behavioral models exploits the
word-level parallelism that exist in modern processors
to speed-up the computations involved in the generation
of the power-virus. The word-level variables grow less
dramatically than the bit-level variables with increasing
design functionality. This accounts for the better scala-
bility of the proposed technique with increasing design
size than the gate-level techniques.

2. Automatic generation of the constraint model from the
behavioral model: The proposed methodology converts
the given behavioral description into an A2M graph
based representation [4] and further converts the same
into a set of integer constraints. The constraints are
solved using an integer solver to generate the required
power virus vectors. All the above steps are fully auto-
mated.

3. Correlation to Gate level representation: The power
virus computed by the proposed technique shall max-
imize the toggles on the inputs and outputs of a circuit.
The interesting question is that will this maximize the
number of toggles in the underlying gate level represen-
tation too, as this is the required real estimate of the

power. The answer to the above question is predomi-
nantly positive. This paper discusses the basic intuition
behind this positive answer. This is further supported
by experimental validation.

4. Handling sequential designs with dynamic unrolling:
The behavior of a sequential circuit S over k time
frames can be modeled as a combinational circuit using
the conventional time frame expansion approach, which
unrolls the combinational part of S, k times [2].

4 Constraint Generation

The proposed methodology may be divided into the follow-
ing three phases, namely, (1) Generation of the A2M graph
from the input behavioral model, (2) Generation of con-
straints from the A2M graph representation and (3) Solving
the constraints using a constraint solver. The following sub-
sections explain the first two phases.

4.1 A2M graph generation

The synthesizable part of the Verilog code that describes
the behavior of a circuit has three major structures, namely,
the Always block, the Assign (continuous)
statements and the Module instantiations.
Hence, the acronym A2M .The A2M Graph essentially has 4
entities, namely, Module, Component, Signal and ADD
Node. Every module definition in the Verilog code maps on
to a Module entity of the A2M graph. Every always, assign
and module instantiation statements in the Verilog code map
on to a Component entity of the A2M graph.

The Module entity contains the various fields necessary
to encapsulate a module definition in Verilog.

The Component entity contains the various fields re-
quired to encapsulate the three types of structures, namely,
a module instantiation, an assign statement and an always
block. The various fields inside a Component are name
and type of the Component, and the ADDNode correspond-
ing to the Component. The ADDNode captures the func-
tionality of the Component and is defined only for the
Components that corresponds to an always block or an
assign statement. The ADD Framework is an internal rep-
resentation of the HDL Description and has been shown to
be complete and efficient. More details on ADD are avail-
able in [5]

4.2 Constraints Generation

This section deals with different Verilog constructs, their cor-
responding A2M representations and their equivalent con-
straint models. This in turn, shall explain the automatic gen-
eration of the model constraints from the given behavioral
model. The standard ILOG [11] constraint solver was used
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for experimentation. Hence, ILOG-type syntax is used to il-
lustrate the example model constraints in this paper.

4.2.1 The reg and wire variables

Two types of variables are commonly used in Verilog mod-
els,namely, the reg and wire variables. These variables
can either be bits or integers (bit-vectors).

Any bit-vector of size n in the input behavioral model
is mapped on to a Signal entity in the A2M graph with
size = n. This is treated as an integer variable (IloIntV ar

in ILOG) whose value ranges from 0 to 2n − 1. The bit vari-
ables are also treated as bit-vectors of size n = 1.

The reg and wire variables in a Verilog expression map
on to one of the two types of nodes on the A2M graph,
namely, the read nodes and the write nodes. As the names
suggest, the variables on the right hand side (left hand side)
of a Verilog expression map on to read (write) nodes. The
read and write nodes in the A2M graph have two attributes
attached to it, namely, the range and the index. The need
for these attributes arises from the fact that a vector can be
referred in the following three ways in a Verilog code.

• Bit Select: For example, ir[3], that selects the third bit
of the bit-vector ir. The respective node in the A2M

graph has index = 3 and range = [−1 : −1]. Since,
the integer solver do not directly deal with bits, the cor-
responding ILOG representation of ir[3] is

23 ∗ (IloDiv(ir, 23) − 2 ∗ IloDiv(ir, 24)),

where, IloDiv stands for integer division in ILOG.

• Part select: For example, ir[16 : 13], that selects the
four bits starting from the bit 13 thru 16 of the bit-vector
ir. The respective node in A2M graph has range =
[16 : 13] and index = −1. The corresponding ILOG
representation is

213 ∗ IloDiv(ir, 213) − 217 ∗ IloDiv(ir, 217)

The variables defined inside a module M carry different val-
ues for different instantiations of M . To encapsulate this,
every variable in M is declared as an array of size equal to
the number of instantiations of M .

4.2.2 Modeling sequential circuits

Every sequential circuit can be represented by the conven-
tional Huffman model [2]. The combinational and the se-
quential parts are clearly distinguished in this representation.
To model the circuit in the integer domain the two basic
principles used are (1)Each sequential element is a variable
in the integer domain; and, (2)Each combinational element
produces a constraint on its inputs and outputs in the inte-
ger domain. The behavior of a sequential circuit S over k

time frames can be modeled as a combinational circuit us-
ing the conventional time frame expansion approach, which
unrolls the combinational part of S, k times [2]. The above
mentioned approach for modeling in the integer domain is
illustrated by using an example of a counter. The following
Verilog code models a counter:

reg [4:0] counter;
always @(posedge clk)

counter = counter + 1;

Without loss of generality, let there be only one instantia-
tion of the module containing the above Verilog code. There-
fore, the variable shall be denoted by counter[0] in the cor-
responding A2M graph. To unroll a circuit over time frames,
another dimension is added to the variables to represent the
time frame. Thus, the variable counter[0][j], denotes the
variable counter in the jth time-frame. The combinational
part of the Huffman Model is the one that sets constraints
on the variable counter[ ] [ ] across time-frames. The Ver-
ilog code and the underlying A2M graph imply the following
constraint:

counter[0][j] == counter[0][j − 1] + 1

Thus, the clock in Verilog is realized as a time frame in the
corresponding constraint model.

4.2.3 Assign Statement

When a circuit is unrolled for MAX TFS time frames, an
assign statement leads to a constraint in each time frame. For
example, the assign statement

assign sum = input 1 + input 2

inside the kth instantiation of a module M shall lead to the
following set of constraints.

for(tf = 0; tf < MAX TFS;tf++)
sum[k][tf ] == input 1[k][tf ] + input 2[k][tf ];

The other operators that include bitwise, comparison, con-
catenation etc. can be modeled similarly.

4.2.4 Always Statement

The constraint model for an always construct in Verilog de-
pends on the event in its sensitivity list. The event can be
either clocked or non-clocked and is represented by an event
node in the corresponding A2M graph. The following code
is a clocked always structure:

always @(posedge clk)
opcode2 <= opcode;

The A2M graph for the above case is shown in figure 1. The
model constraint for the above A2M graph for the kth in-
stantiation of the module to which it belongs to will be:
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Figure 1. Always statement with and without
clk

opocde2[k][tf + 1] == opocde[k][tf ]

The following code is a non-clocked always structure.

always @(sel alu in1 or npc2 or a)
if(sel alu in1 == 1)

alu in1 <= npc2;
else

alu in1 <= a;

The A2M graph for the above case is shown in figure 1.
The model constraint for the above A2M graph for the kth

instantiation of the module to which it belongs to will be:

alu in1[k][tf ] == (sel alu in1[k][tf ] == 1)∗
npc2[k][tf ] + (sel alu in1[k][tf ] == 0) ∗ a[k][tf ]

4.2.5 Module Instantiation

The module instantiations lead to generation of interface
constraints that establish a connection between the input-
output variables of the instantiating module and the instan-
tiated module. Consider the module instantiation:

module alu(out,in1, in2)

Let the following be its kth instantiation.

alu myalu (o1,i1, i2)

The following are the interface constraints assuming that the
circuit is unrolled for MAX TFS time frames. Note that
the following ensures the connectivity of the variables in ev-
ery time frame.

for(j = 0; j < MAX TFS;j++) {
alu out[k][j] == myalu o1[k][j];
alu in1[k][j] == myalu i1[k][j];
alu in2[k][j] == myalu i2[k][j];

}

4.2.6 Power Virus Constraints

As mentioned earlier, the power dissipated is directly pro-
portional to the number of toggles. It is straightforward to
see that every variable in the Verilog model corresponds to a

signal in the corresponding A2M graph. Every signal in the
A2M graph corresponds to an input or output signal in the
underlying gate level netlist. These signals also get modeled
as variables in the constraint model. Given this, it is easy to
infer that by toggling the variables in the constraint model
between successive time-frames shall lead to toggling gate
outputs in the underlying gate level netlist. For every vari-
able V in all its k instantiations in the constraint model, the
following constraints are added.

for(j = 0; j < MAX TFS − 1;j++)
Max.

∑
(Hamming Distance(V [k][tf +1], V [k][tf ]))

over all variables V and all instantiations k of V . The

Hamming Distance operator captures the notion of tog-
gles between successive time frames (tf) of variable V .

5 Experimental Results

The constraints generated as described in the previous sec-
tion is input to a constraint solver that automatically gener-
ates the required vectors. In this section we shall describe
details of the experiments conducted for the ISCAS combi-
national circuits and the 16-bit 5-stage pipelined DLX pro-
cessor.

5.1 Correlation between Behavioral and
Gate level representations

As mentioned earlier, the proposed approach maximizes the
number of toggles on the inputs and outputs of the differ-
ent behavioral level A2M structures and does not take into
account the gate level representation of the same. The ulti-
mate objective is to generate maximum toggles on the under-
lying gate level netlist. The graph shown in figure 2 plots
for different behavioral level constructs, that includes, an 8-
bit adder, an 8-to-1 multiplexer and a 4-bit multiplier, the
number of toggles in the input and output signals against the
total number of toggles in the corresponding gate level im-
plementation. A similar trend is seen for most of the other
A2M constructs. The Magma Blast Fusion tool using the
TSMC 0.13 micron standard cell library was used to synthe-
size the behavioral representations to the corresponding gate
level netlists. The graph shows an increase in the total num-
ber of toggles in the circuit with increase in the number of
toggles in the corresponding inputs and outputs. This sug-
gests that maximizing the toggles on the inputs and outputs
for these structures shall in turn maximize the toggle in the
underlying gate level netlist. Experimental results shown in
the subsequent sections further strengthens our claim.

5.2 Power Virus for Combinational Cir-
cuits

As mentioned earlier the power virus generation for combi-
national circuits involves generating a pair of input vectors
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which when applied successively shall cause the maximum
toggle in the circuit. Given a n-input circuit the number of
such pairs shall be O(4n) resulting in a huge search space.
Even for moderately large circuits the above problem be-
comes difficult to solve. A simpler version of the above is
as follows: Given the first of the two input vectors, gener-
ate the other vector such that successive application of both
produces maximum toggle in the circuit. This reduces the
search space to O(2n). The proposed approach follows the
simplified version.

For generating the power virus the constraint model of the
combinational circuit is unrolled for two time frames. The
constraint variables corresponding to the input of the behav-
ioral model in the first time frame are initialized with the
value of the random vector. Solution to the above constraint
model that includes the power constraints yields the second
vector that maximizes the toggle. Table 1 presents the re-
sults obtained by applying the above technique for the IS-
CAS High-Level Models [1].

Circuit # Toggles # Toggles # Wires # Toggles
at beh. at gate at gate (Random)
level level level

74181 103 123 201 77
74182 20 25 70 17
74283 33 51 104 33

Table 1. Comparison of Behavioral Toggles
with Random Gate Level Toggles

From table 1 it is seen that the number of toggles generated
at the gate level netlist by applying the vectors output by our
method (column 3) is much better than what is generated by
applying random pairs (column 5) of vectors. In addition,
the total toggle count is closer to the number of wires (up-
per bound on number of possible toggles) in the circuit (col-
umn 4). Column 2 gives the number of toggles generated
by the behavioral level representations of the corresponding
circuits.

5.3 Power Virus for the DLX processor

The DLX processor is a pipelined sequential circuit. The
number of gates in Two types of experiments were carried
out on the model. The first experiment was to generate in-
structions that will maximize the toggle when input to the
processor given its initial state S. This enables automatic
generation of assembly instruction sequences from any given
initial state S that can maximize the toggle count and hence
cause peak single-cycle power across different cycles. For
experimental purpose this initial state S was arrived by ap-
plying a sequence of random instructions. Table 2 presents
the percentage improvement in toggle count at behavioral
level got by application of the instructions generated by the
proposed technique in contrast to application of randomly
generated instruction sequences of different lengths. It also
presents the time and memory requirements which are mea-
sured on the HP workstation xw4200.

Length of % improvement Memory Time
Sequence over random (MB) (sec.)

2 247.89 21 1.2
3 197.51 34 2.1
4 200.35 46 0.9

Table 2. Generating instruction sequences of
specified length

A sequence of length 4 automatically output by the method
assuming an initial state S is as follows:

NOP
ADD R1, R0 R2
ADD R1, R0 R2
ADD R1, R16, R13
The above was generated by unrolling the circuit for four
time frames. An interesting point that is revealed during the
experimentation is that an introduction of a NOP between
two non-NOP instructions causes large number of toggles in
the system. This is something which may be taken note by
the compiler developers who tend to generate NOPs in exe-
cutable code for various reasons, that include data and con-
trol hazard management in modern superscalar and VLIW
based architectures. The results in table 2 indicate that our
proposed approach is much better than the random one. Note
that the memory requirement linearly scales with the length
of sequence.

The second experiment is to find a loop of instructions
which when applied continuously should maximize the peak
sustained power. As in the first experiment the processor is
driven to an initial state S by applying a random sequence of
instructions. From this state S, a loop of instructions were
generated that achieves the objective mentioned above. This
needs some additional constraints for the following reason.
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To ensure same sustained power dissipation during every ex-
ecution of the loop with say, k instructions, the system should
be in the same state at the start of every loop. This implies
that for every variable v, v[i][0] = v[i][k]. This ensures that
at the end of each k cycle the system will be in the same state.
Table 3 presents the results of this experiment.

Length Normalized Length Normalized
of the per cycle of the per cycle
Loop toggle count Loop toggle count

5 50 9 55
6 70 10 49
7 67 11 46
8 62

Table 3. Loop generation for Maximizing Tog-
gles

From table 3 it is seen that the per cycle toggle count is the
maximum for loops of length 6 and decreases with subse-
quent increase of the loop length. The reason for the same
may be that the DLX has a five stage pipeline. The following
is a code of length 6 output by our method that generates the
maximum per cycle toggle.
NOP
ADD R1, R0, R2
ADD R1, R0, R2
LD R1, [R2]
NOP
NOP
Several interesting points are exhibited by the above se-
quence. The first one is that the NOPs are predominant. The
second is that even though the value of register R1 is changed
by the ADD instructions, the LD (LOAD) instruction initial-
izes the register R1 back with a value stored in a memory
location whose address and content does not change across
loops. Given that the above instructions were generated as-
suming the initial state of the processor to be S, the state of
the processor at the end of every execution of the above six
instructions should also be equal to S. This also explains
why ST (STORE) instructions that write into data memory
are not generated, as they change the state of the processor.

6 Conclusion and Future Work

This paper presented a technique that used behavioral de-
scriptions to generate power virus test vectors. To the best
of our knowledge, this is the first technique reported for the
behavioral level power virus generation. Experimenting the
proposed technique on ISCAS behavioral benchmark circuits
and the 16-bit DLX processor yielded encouraging results.
Interestingly, the paper addressed the problem of generat-
ing an assembly program that cause the maximum dynamic

power dissipation on the given DLX processor model. The
technique assumed zero delay model. Future work shall in-
volve modifying the technique to account for unit-delay and
variable-delay models.
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